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ABSTRACT

A COMPREHENSIVE APROACH TO SENSOR MANAGEMENT AND SCHEDULING

Gregory A. McIntyre, Ph.D.

George Mason University, September 1998

Dissertation Director:  Dr. Kenneth J. Hintz

Heterogeneous multisensor systems have been widely used in a variety of mili tary and civili an

applications.  While the majority of research in multisensor systems is dedicated to mili tary

applications, other applications include robot navigation, autonomous vehicles and paramili tary

operations.  In general, single sensor systems only provide partial information on the state of the

environment while multisensor systems rely on data fusion techniques to combine related data from

multiple similar and/or dissimilar sensors.  The goal of a multisensor system is to provide a

synergistic effect that enhances the quali ty and availabili ty of information about the state of the

world over that which would be acquired solely from one sensor.

Sensor management can be described as a system or process that provides automatic or semi-

automatic control of a suite of sensors or measurement devices.  Previous approaches to sensor

management all appear to suffer from the mixing of sensor physical requirements with information

needs.  The result has been ad hoc point solutions that treat the problem as a single optimization



task with a performance measure as a weighted sum of diverse, noncommensurate measures.  This

dissertation presents a new mathematical representation of the multisensor system to capture the

sensor management process.  Based on this representation, an original hierarchical sensor

management model is developed that partitions the system into its constituent processes.  These

include the sensors themselves, the targets, the Fusion Space, and the Information Space.  The

Information Space is further partitioned into the Mission Manager, the Information Instantiator,

and the Sensor Scheduler.

Additionally, this dissertation describes a new approach which uses partially ordered sets to

construct a goal-lattice that converts quali tative mission goals to quantitative values for different

sensor actions.  This approach superimposes value apportionment on the lattice in order to provide

a mathematically quantitative and traceable measure of importance (weights) that a sensor manager

can use to optimize trade-offs among competing management functions to meet the mission goals.

Another advantage is that these weights can vary as a function of time or phase of a mission thus

providing a mathematically based methodology to modify the preferences in real-time based on

changes in information produced by data fusion, a human operator, or both.
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Chapter 1

1 Introduction   .

1.1 Motivation and Problem Definition

Heterogeneous, multisensor systems (referred to hereafter simply as multisensor systems) have

been widely used in a variety of mili tary and civili an applications.  While the majority of research

in multisensor systems is dedicated to mili tary applications, other applications include robot

navigation [1], [2], [3], autonomous vehicles [4], [5], [6], and paramili tary operations (e.g. drug

interdiction [7]).  In general, single sensor systems only provide partial information on the state of

the environment while multisensor systems rely on data fusion techniques to combine related data

from multiple similar and/or dissimilar sensors.  The goal a multisensor system is to provide a

synergistic effect that enhances the quali ty and availabili ty of information about the state of the

world over that which would be acquired solely from one sensor.

Until recently, sensors were fewer in number and less capable than they are today.  An

operator could easily decide which sensor to use, when to use it, point and control it, and even how

to interpret the data.  Even the environment in which these systems were used was simpler with

fewer and less diverse threats.  However, the performance characteristics of modern sensor systems

have improved dramatically resulting in more able and diverse systems [8].  These improved

performance characteristics include [9]:
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− All weather

− Jam resistant

− Large search areas

− Emission control

− Improved accuracy

− Aperture agili ty

These technological advances and the use of multisensor systems have also led to a tremendous

increase in the amount of data requiring processing.  The number, types, and agili ty of sensors

along with the increased quali ty and timeliness of data have far outstripped the abili ty of a human

to control them.  With all of the different types of sensor and noncommensurate data, it is often

diff icult to compare how much information can be gained through a given sensor scheduling

scheme.  This has resulted in a need for an automated sensor management system that optimally

schedules the selection and use of individual sensors from among the several available in the

system.

Sensor management can be described as a system or process that provides automatic or semi-

automatic control of a suite of sensors or measurement devices in a dynamic, uncertain

environment.  In general, it is the sensor manager that must determine [10]:

− Which service?

− What sensor?

− Where to aim?

− When to start?
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while monitoring sensor performance.  At its simplest level, a sensor management system is a

control process that must deal with [11]

− Insuff icient sensor resources

− Highly dynamic environment

− Varied sensor capabili ties

− Varied sensor performances

− Randomly occurring sensor failures and

− Enemy interference and spoofing

Thus, a sensor manager is expected to [8]:

− Reduce the operator workload by automating sensor allocation

− Prioritize measurement requests to meet both integrated flight management and weapons

control requirements

− Aid data fusion by coordinating information requests with sensor observations

− Support sensor reconfiguration and degradation due to partial or total loss of a sensor

However, sensor management is only one part of the overall process.  One paradigm used to

explain the use of sensors and sensor management is shown in Figure 1-1.  The key component of

this paradigm is information -- specifically how to optimally obtain information about the state of

the environment through the application of sensors.  Van Creveld [12] states that "The history of

command in war consists essentially of an endless quest for certainty about the state and intentions

of enemy forces …".  It is in the data fusion portion of the command and control system that sensor

measurements of the environment are processed in order to reduce the commanders' uncertainty
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about the environment.  More specifically, "…data fusion is a process dealing with the association,

correlation, and combination of data and information from multiple sensors and sources to achieve

refined position and identity estimation and complete timely assessments of situations and threat,

and their significance [13]."

A conceptual depiction of the overall process flow is shown in Figure 1-2.  The environment is

comprised of a set of targets and their states.  These target states can be divided into two subsets -

those targets that have not been detected and those that have been detected and are, or will soon be,

in track.  Those targets that are in track can be further subdivided into two subsets - targets that

have been identified and those that have not been identified.  Sensors under the control of the

sensor manager make measurements of the physical phenomenon exhibited by the targets and

combine these into observations.  These observations are then processed in order to provide target

� � � � � � �
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Figure 1-1:  Command and Control Paradigm
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state estimates.  These estimates are then combined with other sensory data and external inputs and

inferences to obtain information.  The sensor manager then uses this information along with some,

not necessarily time-invariant, performance measure to control the next measurements made by the

sensors.  What these two paradigms show is that sensor management is a control process and data

fusion is an estimation process.  It also highlights the fact that both processes are interrelated.

1.2 Sensor M anagement Applications

The impetus for this research is based on what is called the “ in harm’s way” mission of a

surveill ance aircraft.  The aircraft is capable of carrying several different types of sensors (e.g.

infrared, radar imaging systems, and electronic surveill ance measures).  The aircraft is sent out on

a surveill ance mission with or without any a priori information about the target environment that it

Identified 

 Targets in Track

Not            
Identified            

Sensor Manager

INFORMATION

Observations

Estimates
F u n c t i o n

M a p s
O b s e rv a t io n s

to
E s t im a te s

Target States

Performance
Measure

Undetected Targets

Figure 1-2:  Process Overview
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is to operate in.  The information sought here is state information about any potential threats

(targets).  The goal of the mission is to detect, track, and identify as many targets as possible.

Several other well defined mili tary applications are presented by Musick and Malhotra [9] and

Malhotra [14].  Essentially, the Sensor Manager’s task is to provide the most effective transfer of

information from the real world to our internal mathematical model of the world.  That is, subject

to operational constraints, it is desired to minimize the mean-squared error between the actual and

estimated target state (both kinematic and nonkinematic) through the allocation of sensing

resources.

While most of the research in sensor management has been directed towards tactical mili tary

applications, sensor management is not limited to this application.  Two other examples include the

search and rescue of individuals in hazardous situations and the management of several low earth

orbit satelli tes to maintain space object ephemeris.  There also appears to be applications of this

approach to data mining in large databases.  The search and rescue example is part of NASA’s

effort to develop and apply aerospace technologies capable of locating aircraft, ships, spacecraft,

or individuals in potential or actual distress and then provide immediate aid to extract victims to

safety.  While this NASA effort spans a wide range of disciplines, sensor management can also be

applied to remote sensing.  Specifically, sensor management is required to manage the wide variety

of sensor (foliage penetrating synthetic aperture radar, laser systems and multi- and hyper-spectral

optical scanners) to detect and identify small targets and optimize tactics for search using remotely

sensed data.  The satelli te example is part of an ongoing project for space object surveill ance

involving approximately 30 low earth orbit satelli tes with severely constrained viewing geometry.

There are currently about 8000 objects (satelli tes, space junk, etc.) in orbit with a projected 15,000
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objects shortly after the turn of the century.  The constraints placed on the sensor aboard each

satelli te include:

− Extremely limited field of view due to the requirement to image the object against deep space

− Can’ t image against bright background (e.g. sun, moon, earth)

− Can’ t imaging in the Earth’s shadow

− Track time duration is approximately 25 seconds (varies with target)

Additionally, the viewing opportunities also vary in quali ty and are dependent on

− Viewing angle (better of larger angle)

− Distance from sensor to target (quali ty decrease with increase in distance)

− Sun angle and object reflectivity (effects object brightness)

− Target and satelli te movement during view

1.3 Major Contr ibutions

A variety of partial (open-loop) sensor management approaches have been proposed (and will

be reviewed in Chapter 2), all of which appear to suffer from the mixing of sensor physical

requirements with information needs.  This commingling of inappropriate, noncommensurate

measures leads to ad hoc methods of sensor management and no comprehensive framework in

which to develop the separable components of a complete system.  The ad hoc nature of these

solutions, essentially “point solutions,” does not allow for direct comparison, evaluation, or

evolutionary improvement.

The research presented in this dissertation proposes a new approach to sensor management

based on information theoretic measures and lattices of partially ordered sets (POSET) along with
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a new, comprehensive hierarchical sensor management model.  Expected information gain, as

measured by the expected change in entropy, has been shown to be a valid approach to sensor

management for determining the trade-offs between search, track, and identify.  While using this

measure of information gained is a necessary condition, it is not a suff icient condition for complete

sensor management.  That is, if one uses only information gained as a means to perform sensor

management trade-offs, it does not take into account the multiplicity of competing mission goals.

The approach developed and presented in this research to overcome this limitation is the use of

inclusion relationships among goals and partially ordered sets of these goals.  This facili tates the

construction of a hierarchy of goals and a mathematical means to weight the multiple, competing

goals.  The result is, regardless of the type of scenario – mili tary or civili an, a method that results

in a new, quantitative, and traceable measure of importance that a sensor manager can use to

perform and optimize trade-off among search, track, and identify information needs.

This hierarchical, reductionist sensor system introduced here maintains its own representation

of the world or environment at different levels of abstraction in different levels of the hierarchy.

The highest level in the hierarchy incorporates mission requirements and human inputs to determine

the values or relative preferences among search, track, and identification as quantified by a

weighted, non-stationary, lattice of goals.  The next level contains the function of information

management in the form of an information-to-observation mapper referred to as an Information

Instantiator (II) which converts an information need into an observation function (described in

greater detail i n Section 2.4).  The actual allocation of this observation function to a specific sensor

or set of sensors which make the measurements is optimized in the next level by a separate sensor
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scheduler.  The optimization criteria of the sensor scheduler are based on sensor related concerns

as well as priorities assigned to observation tasks by the Mission Manager (MM) and passed to it

by the Information Instantiator.

A fundamental task of the information space, at least the sensor manager portion of it, is to

provide the most effective transfer of information from the world to our internal mathematical

model of the world subject to operational constraints and in consonance with a time-varying set of

ordered goals.  One component of that process is the conversion of information needs required to

search for new targets, maintain targets in track, and identify targets in track. A second component

is the manner in which the mission manager dispatches requests to the Information Instantiator.

The details of the quantification of goals and the determination of the relative value of search,

track, and ID is covered in Section 2.5.

Since the terminology is not generally agreed upon, for the purposes of this dissertation, the

following definitions will be used and are consistent with the definitions in the Oxford English

Dictionary [15].  Information is a change in uncertainty about something.  An observation is the

estimation of a property of a target through the mathematical combination of one or more

measurements, possibly combined with other data.  A measurement is the fundamental acquisition

of data about a target through the use of some physical property of the target (e.g., reflected

energy) or environmental property caused to change by the target (e.g., wake).

The information space can be thought of as operating as the integration of two different

concepts.  The first is a touch it once approach.  Touch it once implies that when an event occurs,

the mission manager decides what to do, dispatches the task, remembers that it has done so by
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putting the task on a queue, and waits for another event (which may be an internal need as well as

an externally driven event).  The second concept is that of a discrete event simulation (DES) in

which a queue of events to be performed at a later time is maintained.  The events referred to here

are the tasks which have been passed to the II but are also put on MM’s queue indicating

measurements scheduled to be executed in the future.  Entries in this queue contain such data as

which contact number, what kind of information is needed, when is the information needed, how

much information is needed, and why this event was scheduled.

 Going back to the “ in harm’s way” example, assume that the mission manager has no a priori

information about its target world.  Of the three choices, neither tracking nor ID  is appropriate, so

search is the only alternative.  The search task is dispatched to the sensor manager which searches

utili zing all the sensors until a target is detected.  This detection generates an event with which the

MM must now deal.  Since it is the result of a search, the MM can now choose to either identify or

track based on the relative value of the two options as determined by the non-stationary goal

lattice.  The Mission Manager then responds to the event by dispatching to the II portion of the

sensor manager a request for ID or track data from the target.  This request includes the goal-

derived value of the observation from the lattice as well as the required accuracy and temporal

constraints and places it in its own queue of dispatched requests.  This is essentially a request for

information without indicating how it is to be satisfied.  The MM is no longer concerned with the

queued task unless or until the II and/or the Sensor Scheduler reply to the request with either the

result of the observation or an unable-to-observe acknowledgment.  It is important to note that an

unable-to-observe response may be caused by too restrictive a requirement on the information, i.e.,
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a request for the information too soon or at too low of a priority to preempt other executing or

scheduled sensor manager tasks.

1.4 Dissertation Overview

Chapter 2 provides a comprehensive description and li terature review of the state-of-the-art

sensor management including a discussion of a newly proposed, mathematically rigorous sensor

management model of a multisensor system.  Also discussed is the formulation of a new and

original comprehensive model which is used to develop an information theoretic approach to sensor

management combined with the use of partially ordered sets to compute weights or values of

different sensor functions in order to facili tate the trade-offs between them.

The goal of the research presented in this dissertation is to apply measures of information to

managing multiple sensors in order to obtain a near optimal real-time sensor utili zation within the

constraints of the mission requirements and sensor limitations.  Chapter 3 briefly reviews the use of

information theory within the context of sensor management including a description of the

measures that will be used for calculating the expected information gain for search, track, and

identification.  It further discusses why information is chosen as the measure to maximize.

Kinematic state estimation is an important aspect used within a sensor management system.

As such, a review of maneuvering target tracking is presented in Chapter 4 along with a

comparison of several Kalman fil ter models used in the target kinematic state estimators.
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The simulation of the proposed sensor management model is presented in Chapter 5 and the

results are presented in Chapter 6.  Finally, Chapter 7 provides a summary of the work presented

here and concludes by discussing the strengths and limitations of this proposed sensor management

model along with possible future research.
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Chapter 2

2 Sensor M anagement and Sensor Scheduling  .

2.1 The Sensor M anagement Role

As discussed in Chapter 1, technological advances and the use of multisensor systems have led

to a tremendous increase in the amount of data being processed that has far outstripped the abili ty

of a human to control it.  The data provided by different sensors is of different units, dimensions,

and types (detections, position, or target class or subclass).  With all of the different types of

sensors and this noncommensurate data, it is often diff icult to compare how much information can

be gained through a given sensor scheduling scheme.  This has resulted in the need for automated

sensor management systems that optimally schedules sensor measurements.

Often the terms sensor management and sensor scheduling are used interchangeably but they

are not the same.  Sensor management can be defined as “…the process which seeks to manage or

coordinate the use of sensing resources in a manner that improves the process of data fusion and

ultimately that of perception, synergistically [16].”  This reduces to an almost trivial situation if

there is only one sensor or no contention for sensor resources.  Sensor scheduling refers to the

actual allocation of measurement tasks to specific sensors.  Figure 2-1 depicts the evolution in

sensor management research and development (R&D) as characterized by Denton, et al.[10]  As

sensor systems and the associated computers and signal processing techniques
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improved, the levels of data processing also evolved.  Sensors of the 1960’s era were simple

enough that the pilot performed both the sensor management and data fusion functions himself.

Present-day sensors are more agile and more numerous resulting in an increase in the amount of

data being processed.  “As data quantities increase and control choices multiply, workload

increases exponentially and eventually even the most able pilots begin to miss important

opportunities or fail to recognize critical situations [9].”  This has resulted in the need for

integrated automatic or semi-automatic sensor management systems.

Popoli [17] describes sensor management as a feedback control system.  The system attempts

to obtain the most information from the available sensors by continually monitoring the sensors’

performance.  This is done by comparing performance relative to a specified criterion (see

Rothman and Bier [18] for a comprehensive list of performance measures).  This generates

feedback control to the sensors.
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Sensor management is important in terms of the benefits it provides over non-coordinated

sensor operation.  By automating the process, it reduces the operator workload.  The operator

defines the sensor tasking criteria instead of controlli ng multiple sensors individually by specifying

each operation to be performed by each sensor.  In an automated, semi-autonomous sensor

management system, the operator concentrates on the overall objective while the system works on

the details of the sensor operations.  This allows for multisensor fusion by taking advantage of the

strengths of each sensor.  Additionally, the feedback within the sensor management system allows

for faster adaptation to the changing environment.  Thus the sensor management system effectively

uses the limited resources available [17].

The representation of the sensor management function and its relationship to data fusion

developed and used in this research is shown in Figure 2-2.  Sensors are tasked to make

measurements of the environment.  These measurements are then processed to obtain observations

and then combined to obtain information.  This information is used by the Mission Manager (along

with internally or externally generated performance measurements) to generate information

requests to be processed by the Sensor Manager.  The Sensor Manager is partitioned into two

orthogonal functions, one concerned with the information to observation request mapping

(Information Instantiator) and the other concerned with mapping these observation requests to

sensors measurement requests or tasks (Sensor Scheduler).  It is important to distinguish between

the functions performed by the Information Instantiator and the Sensor Scheduler.
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While the Mission Manager is concerned with metasensor issues such as:

− How accurately to measure?

− Which service to perform (e.g., search, track, fire control, etc.)?

− From what physical location of the environment to obtain a measurement?

− When is the earliest usable time to begin the measurement?

− What is the latest usable completion time for the measurement?

the problem for the Information Instantiator is to determine how to maximize the effectiveness of

individual sensors or a collection of sensors while simultaneously optimizing such conflicting

objectives or goals as

− Detection

− Tracking

− Identification/Classification

− Emission control (EMCON)

In contrast, sensor scheduling deals with intrasensor which include:

− Which sensor or combination of sensors can best perform the measurements required of a

observation task?

− How do sensor interact (e.g. radar interfering with ECM)?

− Which sensor mode?

− What scan volumes, beam scheduling and/or dwell-time?

In order to determine how to accomplish a list of tasks based on sensor availabili ty and

capabili ties, Zhang and Hintz [19] developed an on-line, dynamic, preemptive sensor scheduling
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algorithm called the On-line, Greedy, Urgency-driven Pre-emptive Scheduling Algorithm

(OGUPSA). McIntyre and Hintz enhanced [20] the OGUPSA algorithm and demonstrated its use

in a sensor management simulation [21].

2.2 Requirements, Functions, Pr inciples, and Problems

The goal of sensor management is to perform the right task at the right time on the right object

based on external performance measures or criteria.  This is a complex task considering that the

sensors must work within a highly dynamic, nonstationary environment and with finite sensor

capabili ties and availabili ties.  It is important to note that the sensor manager is trying to optimize

the utili zation of a finite set of sensors with a finite computational capabili ty in this dynamic, non-

stationary environment to maximize the flow of information about the environment so that a

mission (goal) can be successfully completed (achieved).  As a result, the sensor manager must [8]

− Permit maximum flexibili ty for sensor resource allocation

− Maintain mission effectiveness in a degrading hardware environment

− Possess maximum self monitoring capabili ty

− Exhibit minimum response time while servicing many near-simultaneous requests

while the primary functions of sensor management are:

− How accurately to measure?

− Which service to perform (e.g., search, track, fire control, etc.)?

− From what physical location of the environment to obtain a measurement?

− When is the earliest usable time to begin the measurement?

− What is the latest usable completion time for the measurement?
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The general principles involved in a sensor management system to effectively accomplish the

above functions include [9]:

− Plan to use all sensors (offensive & defensive)

− Value long-term goals of survival and success, not just accuracy and identity

− Dynamic environment dictates adaptive methods

− Choose a modeling technique that is mathematically sound, comprehensive, and tractable

− Account for dissimilarities in sensor abili ty

− Eliminate redundant sensor allocations and take advantage of sensor synergies

− Provide for emission controls (passive and low probabili ty of intercept modes)

− Achieve iteration rates in planning that keep pace with all environment changes

− Shed load gracefully when sensor burden hits limits

− Consider adaptive-length planning horizons.

The problems that must be dealt with by a sensor management systems include [11]:

− Insuff icient sensor resources

− Highly dynamic environment

− Varied sensor capabili ties

− Varied sensor performances

− Randomly occurring sensor failures and

− Enemy interference and spoofing.

2.3 Sensor M anagement Techniques

A variety of techniques have been proposed or applied to the area of sensor management.

Buede and Waltz [22] discuss several issues that have been proposed.  They include heuristic or
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rule based systems with greedy search algorithms; optimization techniques that include decision

theory or utili ty theory, linear programming, and fuzzy set theory, and team theory.  Musick and

Malhotra9 review recent applications which include artificial neural networks, decision theoretics,

information theory, and mathematical programming techniques including Linear, Nonlinear, and

Dynamic Programming.  Several other authors [17], [23], [24], [25], [26], [27], [28] address the

use of Knowledge-based systems or expert systems.

One of the first articles to apply optimization techniques to sensor management is by Nash [29]

in which he uses linear programming to determine sensor-to-target assignment for targets being

tracked.  Nash uses the trace of the Kalman fil ter error covariance matrices as the costs

coeff icients in the objective functions.  Also, he uses the concept of pseudo-sensors to handle slack

sensor assignments for the case when there are fewer targets then sensor tracking capabili ty.  Fung,

Horvitz, and Rothman [30] develop a decision theoretic sensor management architecture based on

Bayesian probabili ty theory and influence diagrams.  Manyika and Durrant-Whyte [31] use a

decision theoretic approach to sensor management in decentralized data fusion while Gaskell and

Probert [32] develop a sensor management framework for mobile robots also based on a decision

theoretic approach.  Malhotra [14] discusses the temporal nature of sensor management and

describes the sequential decision process as a general Markov decision process.  Dynamic

Programming is a method for solving a Markov process except that it is a recursive algorithm that

determines minimum costs based on the final state and works backwards.  Due to this requirement

to know, a priori, the optimal cost at each stage and the possible combinatorial explosion in

enumerating each possible actions in a Dynamic Program, Malhotra proposes using Reinforcement

Learning as an approximate approach to Dynamic Programming while Washburn, et al. [33]
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present a sensor management approach based on Dynamic Programming to predict the effects of

future sensor management decisions.

Two optimization approximation approaches applied to sensor management in the li terature

include the use of fuzzy reasoning and artificial neural networks.  Molina López, et al  [34] present

a sensor management scheme that accomplishes sensor tasking using knowledge-based reasoning

and fuzzy decision theory.  Zhongliang, Hong, and Xueqin [35] use a back propagation neural

network to track maneuvering targets over a wide range of conditions.  Their target tracking

scheme utili zes parallel Kalman fil ters and uses the neural network to improve position, velocity

and acceleration tracking precision.  Brownell [36] applies neural networks for sensor management

and diagnostics in a production plant to increase energy eff iciency while reducing waste and

pollution.

Several recent papers have been investigating the application of Information Theory in order to

develop a metric that a sensor management system can use to perform sensor-to-task trade-offs.

Information Theory, in the form of changes in entropy, has been used in a variety of applications.

The most widely used measure of uncertainty is entropy but others include maximum entropy

probabili ty estimation, discrimination information functions, and mutual information functions.

Hintz and McVey [37] first proposed the use of an information theoretic measures in scheduling a

single sensor to track multiple targets.  They describe situations where there is either insuff icient

computation power to utili ze all of the available data or where there are fewer sensors than

processes to measure.  Their approach is to treat the sensors as constrained communications

channels and compare them to Shannon’s [38] measure of information capacity in a bandlimited
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channel.  The basis of their approach assumes that the channel is already being used to its

maximum capacity in a coding sense, and that more information about the states of multiple

processes can still be obtained by choosing that process to measure which will yield the greatest

decrease in its uncertainty.  Using this analogy, they use the expected change in entropy (as

measured by a norm of the error covariance matrix) as a measure of expected information gained

for determining which target state estimates to update.  This measure is used to maximize the

amount of information at each sample interval.  Hintz [39] then expands the use of this measure to

the cueing of automatic target recognition systems.  The result of these two papers is that they

place search, track, and identification measure of information into a commensurate space.

McIntyre and Hintz [40] use this entropy based information theoretic metric to perform search

versus track trade-offs in a simulation program.

Another Information Theoretic approach presented in the li terature uses discrimination gain

which is based on the Kullback-Leibler discrimination information function [41].  Schmaedeke [42]

uses discrimination gain as the cost of sensor allocation in Nash's Linear Program objective

function to determine the sensor-to-target tasking.  While he shows how this optimally schedules

sensors at each time increment, the Linear Program does not run fast enough for real-time

applications.  Kastella [43], [44] and Schmaedeke and Kastella [45] apply discrimination gain to

determine the resolution level of a sensor for measurement to track association.  Lastly,

discrimination gain is used by Kastella [46], [47] and Kastella and Musick [48] to determine where

to search for, and then track, targets based on discrete detection cells representing the probabili ty

of a target being present in a cell first for static targets and later for moving targets.
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A good summary of data fusion (1) and sensor management (2) and the fundamental issues

that they must address is provided by Manyika and Durrant-Whyte [16].  The authors state what

the issues are and I quote

1. How can the diverse and sometimes conflicting information provided by sensors

in a multi-sensor system, be combined in a consistent and coherent manner and

the requisite states or perceptual information inferred?

2. How can such systems be optimally configured, utili sed and coordinated in order

to provide, in the best possible manner, the required information in often

dynamic environments?

The techniques used in sensor management along with their applications are categorized and

presented in two tables.  Table 2-1 lists several general discussion references with a description of

the main focus of the article while Table 2-2 presents a list of techniques and applications

Table 2-1:  General Sensor M anagement References

Focus of Article Author
Discusses performance criteria Rothman and Bier [18]
Defines sensor manager requirements and functions Denton, et al. [10]
Defines sensor management, its need, how to accomplish it, and

benefits from its use
Popoli [17]

Describes sensor management role in sensor fusion Waltz and Llinas [49]
Discusses sensor management issues McBryan, et al. [22]
Research at British Aerospace Upton and Wallace [50]
JDL fusion model including sensor management as Level IV White, et al. [51]
Drug interdiction Chong and Liggins [7]
Compares several management techniques to detect and classify

targets
Kastella and Musick [48]

General discussion of sensor management Musick and Malhotra [9]
Drug Interdiction/Theater Surveill ance Liggins and Bramson [52]
Tactical Aircraft Marsh, et al. [53], [54]
Manufacturing Robot Lynch and De Paso [55]
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Table 2-2:  Summary of Sensor M anagement Techniques and Applications

TECHNIQUE APPLICATION
Heuristic Tactical aircraft [56], [57]

Tactical aircraft [58]
Rohde and Jamerson [59]

Expert System Tactical aircraft [17], [23], [24]
Surveill ance networks [25]
Tactical navigation [26]
ESA Radar control [27]

Multiple Experts Architecture Air defense [28]
Utili ty Theory Tactical aircraft [8]

ESA Radar scheduling [60]
Automatic Control Theory Tactical aircraft [61]
Fuzzy Logic/Theory
Fuzzy Decision Trees Tactical aircraft [17]
Fuzzy Reasoning Tactical aircraft [34]

Cognition Command, Control, Communications [62]
Decision Theoretic Tactical aircraft [30]

Mobile robot [31]
Bayesian Belief Networks Mobile robot [32]

Probabili ty Theory
Bayesian Approximation Robotic sensor estimation [63]
Dempster-Shafer Evidence Theory Mobile robot [64]

Stochastic Dynamic Programming Tactical aircraft [33]
Reinforcement Learning Tactical aircraft [14], [65]

L inear Programming Sensor to target assignment optimization [29], [42]
Neural Networks Production plant control [36]

Tracking maneuvering targets [35]
Genetic Algor ithms Scheduling for sensor management [66]
Information Theoretic
Shannon entropy Mili tary communications, Multiprocess Control,

Human supervisory control [37]
Shannon entropy Sensor cueing [39]
Shannon entropy Drug interdiction/Theater surveill ance [67]
Shannon entropy Mobile robot [16], [68]
Shannon entropy Search versus Track trade-offs [21], [40]
Shannon entropy Sensor management in a decentralized sensing

network [69], [70]
Kullback-Leibler/Discrimination Gain Sensor to target assignment optimization42

Kullback-Leibler/Discrimination Gain Tactical aircraft [71]
Kullback-Leibler/Discrimination Gain Target detection and classification [46], [47], [48]
Kullback-Leibler/Discrimination Gain Multitarget tracking [45]
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presented in the li terature .  The major drawback to most of the references in this survey is that

they tend to be point solutions with no mathematical framework for describing, predicting, and

comparing performance among various alternatives.  This leads to the proposal of a new

mathematical model in the next section.

2.4 Mathematical Model

Given any multisensor system, sensors make measurements of the environment.  These

measurements are combined into observations, and possibly combined with other data to form

estimates.  These estimates are then combined to produce information.  It is this information that is

used along with performance measures to control sensor tasking.  While this description captures

the control and estimation process and provides a satisfactory explanation of the interaction

between sensor management and data fusion, there are other issues and components in this process

that must be considered.  The overriding issue is the consideration of the temporal relationships

involved in the process.  The other components include search, track, and identification techniques.

This leads to the need for a mathematically well-formed, computationally eff icient, and near-

optimal comprehensive sensor management system.

The formulation of the comprehensive sensor system model presented here is inspired by

Malhotra’s general analytical model [14] but is mathematical representation that is directly

applicable to sensor management.  The model is shown in Figure 2-3 complete with all of the

processes - search, track, identification, the fusion space, and the information space (which

contains sensor management).  The term “space” used in fusion and information space is based on

the definition of a space as defined by James and James [72] as “Any set or accumulation of
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Figure 2-3:  Mathematical Model of Target World and Sensor M anager
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things, the members being called elements or points and usually assumed to satisfy a set of

postulates of some kind.”  More specifically,  they are metric spaces which is defined by James and

James as “A set T such that to each pair x,y of its points there is associated a nonnegative real

number called their distance, which satisfies the conditions:

1)  ρ(x,y) = 0, iff x = y

2)  ρ(x,y) = ρ(y,x)

3)  ρ(x,y) + ρ(y,z) = ρ(x,z)

The function ρ(x,y) is said to be a metr ic of T.”

The postulates of the detection space are not covered here but the postulates of the information

space include

1)  Entropy being a measure of uncertainty

2)  Change in entropy is equivalent to change in information

3)  Total information available at a given time is measurable

4)  Total information available if all processes were to be observed at a given time is

measurable and provides an upper bound, and

5)  Expected information gain for a given scheduled sensor task is measurable.

These postulates will be discussed in further detail i n the subsequent chapters.  The fusion space,

which contains the data fusion process, is shown in more detail i n Figure 2-4.  An expanded

description of the information space comprised of the mission manager and sensor manager is

shown in Figure 2-5.

The target models shown in Figure 2-3, both detected and undetected, are represented with the

identical discrete event model.  For the undetected target case, the true model is not known to
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the sensor manager but the estimator target model does influence target detection during the search

process.  Once a target has been detected (but not yet identified) and is in track the same model

which has been used in the search process is used in the tracking portion of Figure 2-3.  In the case

of target tracking, one can decide between decentralized or centralized estimation and fusion.  Also

a variety of tracking methods such as innovations-based adaptive fil tering, multiple model

approach, and image-based direct maneuver estimation can be used [73].

As can be seen in Figure 2-5, the Mission Manager and the Sensor Manager work within the

Information Space.  It is through the use of information measures and evaluations of goals that the
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Mission Manager computes information requests and the Sensor Manager converts these

information request to actual sensor measurements through the intermediate step of observations

requests to the information instantiator.  Of particular interest is the role of the sensor manager in

that it subsumes two, essentially orthogonal tasks, information acquisition management and sensor

scheduling.

Previous approaches have treated the sensor management problem as a single optimization task

with a performance measure as a weighted sum of diverse measures.  Since the goals of the

information-to-observation instantiation are fundamentally those of mapping the observation
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functions to individual sensors or pseudo-sensors, the two processes can be partitioned into two

distinct processes.  These two processes can be individually locally optimized (possibly globally

suboptimal) based on separate performance measures predicated on appropriate, yet necessarily

imperfect, models of the other processes which they subsume.  That is, the information manager

instantiates requests for information into the specific type of observation which will satisfy that

requirement without regard to the particular sensor which will be used to perform the observation.

In this manner, it can maximize the flow of information from the world into the information space

representation of the world without investigating all options.  That is, it makes an optimal decision

based on an imperfect and incomplete model of the actual sensors, but in doing so, it reduces the

optimization to one which is manageable and calculable in real time.

The sensor scheduler, on the other hand, does not need to know how the measurements are

going to satisfy some higher requirement for information.  It only needs to concern itself with the

optimal packing of these measurements into the time allotted as well as distributing the

measurement tasks among the available sensors while simultaneously keeping the load balanced

and assuring that all sensors are utili zed to their maximum capabili ty.

For example, the Information Instantiator does not care whether an ESM, FLIR, or RADAR is

used to obtain a bearing that it needs to improve the estimate of a target’s state.  It is only

concerned with the fact that it needs an observation of a particular type and accuracy level with

which to compute the information to satisfy a higher level request.  That is, the Information

Instantiator only needs to have some bound on the information rate which can be achieved with the

sensor suite, without regard for the specific sensors.  In the ideal case, there is some feedback from
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the sensor scheduler to the Information Instantiator reflecting its real-time capabili ties as they

degrade or additional sensors come on-line.  Likewise, the sensor scheduler is not concerned with

the reason for the observations, but is only concerned with the resources that it has available to

fulfill the observation requests.

Another way to look at this is that the information manager does not perform micro-

management, but assumes that within some bounds, the sensor scheduler can satisfy most of its

measurement needs.  Those that it can’ t satisfy are returned to be reprioritized or discarded.  It

further assumes that the information manager has approximate models of the sensors from which it

can obtain measurements, but has no particular interest in which specific sensor the sensor

scheduler uses.

2.5 Applying Partially Ordered Sets to Sensor M anagement

Diff iculty arises when trying to prioritize or determine the weight for each management

function in order to perform the requisite trade-offs.  The use of POSETs and lattices allows one to

superimpose a method of apportioning weights to the mission goals that a sensor management

system supports.  This method is unique to this research and represents a quantum step forward for

the integration of “soft” goals with hard limitations.

2.5.1 Partially Ordered Sets and Latt ices Theory

The theory of orderings or ordering relations plays an important role throughout mathematics

[74] and it is this method that will be effectively applied to the development of a comprehensive

sensor management system.  As a preliminary, several definitions are useful.  When talking of
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ordering relations, it’s convenient to read the symbol “<” as “ is included in” rather than the more

usual “ is numerically less than”.  A partially ordered set or POSET is defined as “…a set which

has a relation x y< , or ‘x precedes y’ , defined for some members or x and y satisfying the

conditions:  (1) If x y<  then y x<  is false and x and y are not the same element.  (2) If x y<

and y z< , the x z<  [72].”  More specifically, a POSET is based on an ordered pair ( )X ,≤ ,

where X is a set and ≤ is an operation or dyadic inclusion relation over X  that must satisfy the

three requirements of reflexivity, asymmetry, and transitivity [74], [75], [76].  These properties are

defined as:

− For all x X x x∈ ≤ ,  (Reflexive)

− For all x y X x y y x, ,∈ ≤ ≤ ,  if  and  then x = y (Asymmetric)

− For all x y z X x y y z, , ,∈ ≤ ≤ ≤ ,  if  and  then x z (Transitive)

If all of the orderings are not specified, then the ordering relationship is called a partial ordering.  If

the POSET is further restricted such that for any two elements in the POSET have both a greatest

lower bound (glb) and a least upper bound (lub), then the elements form a lattice.  Usually a lattice

represents the relationship among the elements of a set.  A common example of this is the Hasse

diagram.

Two examples are presented here to provide an intuitive understanding of POSETs and lattices

for those unfamili ar with the concept.  While POSETs occur throughout mathematics and are used

extensively for machine minimization in Sequential Machine Theory, most examples are based on

algebras or sets.  Two examples shown below use a convenient ill ustration of a POSET called the

order diagram or Hasse diagram.  The first example is an algebraic one
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based on the inclusion relationship “ is an integer divisor of.”  The relationship is defined as

R x y: ≤  with ≤ defined as integer divisor and the set X ={ 1, 2, 4, 5, 10, 20, 25, 50, 100} .  The

resulting inclusion relationship for X is shown in Table 2-3 and the accompanying Hasse diagram

(or lattice) of the POSET is shown in Figure 2-6.  The second example is based on the relationship

R x y: ≤  where ≤ is defined as “ is a subset of” and the set is X ={ { abcdef} , {{ ab} ,{ ef}} ,

{{ ad} ,{ bcef}} , { ab} , { ef} ,  { a,b,c,d,e,f} } .  The lattice for this POSET based on the subset

ordering relation is shown in Figure 2-7.

2.5.2 Computing Weights Using POSETs

As discussed earlier, expected information gained has turned out to be a necessary but not

suff icient condition to perform the necessary task trade-offs required for complete sensor

Table 2-3:  Integer Inclusion
Ordering Relations

Element of X “ integer divisors of”

100 100, 50, 25, 20, 10,

5, 4, 2, 1

50 50, 25, 10, 5, 2, 1

25 25, 5, 1

20 20, 10, 5, 4, 2, 1

10 10, 5, 2, 1

5 5, 1

4 4, 2, 1

2 2, 1

1 1

5 2

1 0

42 5

5 0 2 0

1 0 0

1

Figure 2-6  Latt ice For Integer Division Ordering
Relation
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management.  That is, if one uses only information gained as a measure with which to perform

sensor management trade-offs, it does not take into account the multiplicity of competing  mission

goals which must also be considered.  By defining an ordering relation among the mission goals,

the theory of order relations, or more specifically partially ordered sets, can be used to construct a

set of goals into a lattice and superimpose on this a method of apportioning relative values among

the goals.  The values can be determined by starting with the top node of a POSET having a weight

of 1.  In the absence of any overriding preferences such as changing mission requirements, the

value of a goal is uniformly distributed among the arcs leaving that node.  The value for each node

is then computed by summing the values of all the incoming arcs.  An example of a lattice with

uniformly apportioned values and 13 nodes is shown in Figure 2-8a.  The bottom two nodes, which

represent actions which can be performed, represent the lowest level goals and their values are 0.39

{a b }

{a b }  { e f } {a d }  { b c e f }

{e f }

{a b c d e f }

{a , b , c ,d , e , f}

Figure 2-7:  Latt ice of Subset Ordering Relation
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and 0.61, respectively.  These values can then be used for deciding how frequently to perform

which actions or what the relative priorities of the individual actions should be.

In the case of changing user preferences, the values can be distributed among the outgoing arcs

according to these preferences rather than the previous uniform distribution.  The calculations of

the revised values of the lower nodes then is straightforward as described above.

For example, if the weights of the three nodes in the second layer are changed to 0.7, 0.2 and 0.1,

respectively, the weight of the bottom two nodes change to 0.53 and 0.47, respectively, as shown in

Figure 2-8b.

0 . 3 9 0 . 6 1

0 . 2 2 0 . 5

1

0 . 3 3

0 . 2 8 0 . 2 80 . 2 8

0 . 2 8

0 . 3 30 . 3 3

0 . 1 7

0 . 5 3 0 . 4 7

0 . 2 3 0 . 3 5

1

0 . 1

0 . 1 2 0 . 1 20 . 4 2

0 . 4 2

0 . 20 . 7

0 . 3 5

real , measurable goals

"soft" goals

a) Uniformly apportioned values b) User preference apportioned values

Figure 2-8: Latt ice with Values Apportioned Uniformly Versus User Preference
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2.5.3 Two Real-World Goal-Latt ices

While most sensor management research has been oriented toward mili tary applications, the

use of POSETs and lattices can easily be applied to both civili an and mili tary situations to perform

and optimize trade-offs among sensor management tasks.  The first step in using POSETs is to

identify the goals of any given mission.  The second step is to define the ordering relation which

allows one to build the POSET and associated lattice.  The last step is to assign and compute the

values for the goals that the sensor manager must trade-off .

A useful civili an example where POSETs and lattices can be applied to is the National

Aeronautics and Space Administration (NASA) mission.  The NASA’s Strategic Plan (dated May

1994) identifies three major mission areas -- scientific research, space exploration, and technology

development and transfer.  More specifically, NASA [77] lists them as:

− “To explore, use and enable the development of space for human enterprise”

− “Advance and communicate scientific knowledge and understanding of the Earth, the solar

system, and the universe, and use the environment of space for research”

− “Research, develop, verify, and transfer advanced aeronautics, space, and related

technologies”

Several sub-goals, both from NASA and added by the author, have been identified along with how

they relate to the above three mission areas.  A complete list of these NASA goals is included in

Appendix 1.

An example of a mili tary application is the multiple United States Air Force’s (USAF)

missions.  Several mission areas are defined in the Joint Chief of Staff Publications (JCS Pub 1
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and Pub 3) and Air Force doctrinal manuals -- AFM1-1, Basic Aerospace Doctrine of the United

States Air Force and AFM 1-10, Combat Support Doctrine (currently being rewritten as Air Force

Doctrine Documents) -- that define and explain Air Force doctrine.  These publications and

manuals outline six separate mission areas which include Offensive Counterair (OCA), Defensive

Counterair (DCA), Air Interdiction (AI), Battlefield Air Interdiction (BAI), Close Air Support

(CAS), and Suppression of Enemy Air Defenses (SEAD).  Specific goals within each mission area

are further described in USAF’s Air Command and Staff College course material [78].  These

goals are presented in Appendix 2.

2.5.4 Ordering the Goals

Once the goals have been identified (the set, G), as in these 2 examples, the next step is to

define an ordering relation (≤) on them which allows one to build a POSET (G, ≤).  The ordering

relation used in this research is a precedence ordering that simply states that a subordinate goal “ is

required to accomplish” in order for a goal to be satisfied.  Using this ordering relation, a lattice of

the POSET based on the NASA mission statement and goals is shown in Figure 2-9 (Note:  not all

of the subgoals could be identified so the lattice is incomplete leading to the unusual structure of

the lattice).  The lower portion of the diagram comprises goals for an assumed, but likely, fully

autonomous, unmanned Mars explorer with significantly more capabili ties than the recently used

Sojourner Mars rover.  The unordered subgoals of Space Exploration, Scientific Research, and

Technology and Transfer are equally weighted with a value of 1/3.  The bottom four goals which

are real, measurable actions in Figure 2-9 represent the contributing value of the goals of the Mars

explorer to the NASA mission.  These goals and their weights are:
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Figure 2-9:  NASA Mission Latt ice.  Details of individual goals are in Appendix 1.
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− to analyze the atmosphere, 0.05

− to analyze sample, 0.05

− to search for obstacles, 0.17

− to track obstacles, 0.22

From this, one can see that tracking obstacles contributes more to the NASA mission than

analyzing the atmosphere.  Therefore, if a decision must be made on whether to do one or the other,

tracking should be done first with greater frequency or with a higher rate of occurrence.  Also, if

there are multiple opportunities then tracking should be done in the ratio of 022 05. . .

The lattice for the POSET based on the USAF goals is shown in Figure 2-10.  The six mission

areas and their associated weights are annotated in the figure.  The bottom three goals and their

weights are

− to track detected targets, 0.21

− to id detected targets, 0.22

− to search for targets, 0.57

As previously stated, one of the major advantages of using POSETs with the superimposed

value apportionment is that it is a new method that results in a quantitative, and traceable measure

of importance that a sensor manager can use to perform and optimize trade-off among search,

track, and identify tasks.  Another advantage is that the weights can vary as a function of time or

state.  During any given mission, different goals are preferred over others and these preferences can

change during different phases of a particular mission in response to a nonstationary environment.

These preference can be set a priori and/or in real-time.
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Preplanning can establish weights for specific phases of a mission.  In the real-time case, a

supervisor – either human, automated (i.e. the Mission Manager presented earlier), or both – can

change the preferences during a mission based on changes in information produced by data fusion.

The use of information theory and ordering relations are demonstrated in a simulation model with

the results of the simulation runs presented and discussed in Chapter 6.

In summary, the sensor manager is concerned with the detailed scheduling of measurements by

the various heterogeneous sensors.  It does not concern itself with the particular reason for the

measurement, but only with the fact that it has had a request to obtain a measurement of a target.

The II determines what functions are required based on the type of request passed to it from the

mission manager and the temporal and accuracy constraints of that request.  These functions are

then converted into tasks and passed along with task deadlines and priorities to the sensor

scheduler. The sensor scheduler then optimizes the scheduling of tasks to specific sensors.  The

Sensor Scheduler (OGUPSA) is discussed in more detailed in Chapter 5.  Lastly, the terminology

used in this research is that the Mission Manager issues information requests, the Information

Instantiator issues observation functions, and the sensor scheduler issues sensor actions.

2.5.5 Goal Latt ice Properties

While an initial impression of the goal lattice is that it is nothing more than a graphical belief

model, this perception is incorrect.  Even though both methods share several similarities, the major

difference is in what the methods represent.  Graphical belief modeling represents uncertainty by

providing a method to build and manipulate risk assessment models [79].  This uncertainty is

represented with either probabili ties (Bayesian approach) or belief functions (Dempster-Shafer
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theory of evidence).  The goal lattice was developed as a mathematical method to build and

represent user preferences and manipulate them both a priori, and more importantly, and in real-

time during a mission.  The user preferences change during a mission as a function of time (the

phase of a mission) or operator input.

A lattice, or Hasse diagram, is used to capture the structure of the sensor management

problem.  Specifically it uses a mathematical formalization to specify which goals are directly

related.  While it provides an intuitive description of the problem, it also demonstrates or provides

information on how the goal values are influenced when other goal values change.  The goal lattice

C21

C11 C12 C1R

C22

0C

g
11

1 g 1R1

g 12
1

g
122

Level
0

1

2

l

g 001

g 00
2 g00R

Figure 2-11:  Generalized Form of a Goal Latt ice
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can be used to translate a complex problem into an easily understood representation and establishes

a mechanism for eliciting and documenting an expert’s or user’s preferences.

As stated in a Section 2.5.2, the value for each node (goal) is computed by summing the values

of all the incoming arcs.  Using a generalized form of a goal lattice as shown in Figure 2-11, a

lattice can be described as having l levels with level 0 being the top level, l-1 middle levels, and

level l being the bottom level (the level containing the goals whose weights we are attempting to

compute).  A system of equations can be defined to compute the weights of a particular node at

level i +1.  It is the sum of the products of the incoming arc weight multiplied by the value of the

node at level i for all nodes that are a parent node.  This process continues until the bottom nodes,

level l nodes, have been defined.  For example, the value of the first node at level 2, c2,1, is

c g c g c g c2,1 R R= ∗ + ∗ + + ∗111 1 1 1 2 1 1 2 1 1 1, , , , , , , , ,
s ( 2-1 )

where the subscripts of c are the level and node within the level (with R nodes in that level).  The

variable g is the user defined arc weights and the subscripts are the level number of the parent

node, the node number within that level and the node number in the next level.  The sum of all the

weights coming from a single node is equal to the value of the node from which they came.

c g k ci,r i r j
j

k

i,r= ∑ , ,     where is  the number of arcs leaving 
( 2-2 )

These weights need not be uniformly distributed.  Once all of the equations have been defined, the

weights of the bottom nodes can be recursively solved such that the weights can be expressed as

the sum of value for all of the possible paths from the top node to the bottom node.
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The process of solving the system of equations can be extremely tedious and a simpler method

is needed.  Fortunately, the computation of the goal lattice lends itself to a Linear Algebraic

interpretation, [80] and [81],  and is easier to visualize.  Each layer i can be thought of as a Ri-

dimension vector being linear transformed into a Ri+1-dimension vector.  A matrix, Γi, that contains

the user specified weights for the arcs leaving the nodes at level i is used to compute the values of

the nodes at level i+1.  Γi can be considered a transformation matrix that transforms the Ri-

dimension vector Ci to Ri+1-dimension vector Ci+1 [80].  In matrix form this becomes

[ ]

C C

C C C C

i i i

i i i i

i

i i i

i i i

i i i

i
i

g g g

g g g

g g g

i i

g

i

=





















+Γ

Γ

1

1 2

where

    =      a vector of R  node values for level 

    =  

= the transition matrix from level  to level +1 consisting of the

  arc coefficients.  The subscripts of  are

      1) from level number ,    

      2) node number from within level 

R

T

i

,1,1 ,2,1 ,R ,1

,1,2 ,2,2 ,R ,2

,1,R ,2,R R ,R
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i +1 i+1 i i +1

, , ,

,
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[ ]

i

ii i i i i

, and 

      3) node number within next level

    =    the vector of R  nodes for level R

T

i+1C C C C+ + + + +
+1 11 1 2 1 1

1, , ,
x

( 2-3 )

The sum of the columns of Γi is the sum of the arcs leaving a  node at level i and by the

definition of c in ( 2-2 ) must sum to 1.  If there are a total of Ri nodes in level i and Ri+1 nodes in

the level i+1, then Γi will be a Ri +1 by Ri matrix.  A transformation matrix can be defined for all of

the levels from 1 to l.  Once this has been accomplished, each equation of the form in ( 2-3 ) can be

recursively expanded such as from C1 and C3
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C C

C C

C

2 1

3 2 2

2 1

=
=
=

Γ
Γ
Γ Γ

l

l

( 2-4 )

The result is that Γ Γ2 1  is the product of two linear transformation matrices which transforms the

vector C1 into C3.  This new matrix Γ Γ Γ= ∗2 1  is itself a linear transformation matrix, [81] and

retains the desirable property that the sum of the columns equal 1.  Continuing the process from C1

to Cl result in the value vector at level l being

C Cl l l

l

l

l

l l
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which is the linear transformation from C1 to Cl.

A numerical example based on Figure 2-12 is presented to demonstrate the above process.

First, the systems of equations are developed and they are
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Then solving for c3,1 and c3,2 yields

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

c c c c c c c

c c c c
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Figure 2-12:  Goal Latt ice Properties Example
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Thus there are 6 paths from the top node to the bottom node c3,1 and are listed below along with

their associated path value

c0 → c1,1 → c2,1 →c3,1 (0.2062),

c0 → c1,2 → c2,1 →c3,1 (0.0675),

c0 → c1,4 → c2,1 →c3,1 (0.0315),

c0 → c1,2 → c2,2 →c3,1 (0.0228),

c0 → c1,3 → c2,2 →c3,1 (0.0076), and

c0 → c1,4 → c2,2 →c3,1 (0.0068)

From the top node to the other bottom node, c3,2 there are 8 paths.  The paths along with their

associated weight are

c0 → c1,1 → c2,1 →c3,2 (0.0688),

c0 → c1,2 → c2,1 →c3,2 (0.0225),

c0 → c1,4 → c2,1 →c3,2 (0.0105),

c0 → c1,2 → c2,2 →c3,2 (0.0372),

c0 → c1,3 → c2,2 →c3,2 (0.124),

c0 → c1,4 → c2,2 →c3,2 (0.0112),

c0 → c1,1 → c2,3 →c3,2 (0.275), and

c0 → c1,5 → c2,3 →c3,2 (0.04),

The computational complexity of determining the weights of the bottoms nodes can be seen to be

polynomial since they are just the sum of the product of the segment weights for each path.

Using the linear transformation representation described above, the level 1 vector is

[ ]
[ ]

C1 11 1 2 1 3 1 4 1

005 015 02 006 004

=

=

c c c c c
T

T

, , , , ,5

. . . . .

( 2-6 )

and the 2 transformation matrices from level 1 to level 2 (Γ1) and level 2 to level 3 (Γ2) are
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The transformation matrices from level 1 to level 3 (Γ1 ∗ Γ2) is given by

Γ Γ Γ= ∗

=










2 1

0375 0602 038 0639 0

0625 0398 062 0361 1

. . . .

. . . .

( 2-8 )

Now using ( 2-6 ) and ( 2-8 ), C3 can be computed as follows

C C3 1
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( 2-9 )

As discussed previously, the sum of the columns for Γi sum to 1 as does Γ.  It is interesting to

note that the elements of Γ take on special significance.  Looking at the 1st column of Γ, this is the

proportion of the value of node c1,1 that goes to support the bottom goals c3,1 and c3,2 -- 0.375 and

0.625 respectively.  Column 2 is the proportion of the value of node c1,2 that supports the bottom

goals and so on for the rest of the columns.  The elements of each row of Γ also have significance -

namely that they are the portion of the level 1 nodes that support the bottom node associated with

that row.
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2.5.5.1 Goal Latt ice Sensitivity

Lattices can be described based on their visual appearance - that is whether or not they are

symmetrical.  This symmetry or asymmetry can then be used to study the sensitivity of the weights

of the goal nodes (the bottom nodes in a goal lattice) to changes in user value preferences of the

arcs leaving higher level nodes.  This sensitivity can be divided into two categories - value

sensitivity and structural sensitivity.  Value sensitivity deals with how sensitive the goal nodes are

to changes in user arc value preferences while structural sensitivity is concerned with how sensitive

the goal nodes are to the asymmetry of the goal lattice.

2.5.5.1.1 Value Sensitivity

In order to demonstrate value sensitivity, a 3 layer symmetric lattice with two bottom nodes is

used.  The top most goal is divided equally among n nodes in the middle level - each arc has weight

1/n.  One of the arc weights to the n nodes is “perturbed” by the differential value δ while the other

n-1 arcs are uniformly decreased by δ / (n-1).  The goal lattice is symmetrical in structure by

mirroring it about the vertical axis.  The measure of asymmetry is “ p ” , the number of goals from

the middle layer which contribute to each of the 2 bottom most goals (A and B).  This goal lattice

is depicted in Figure 2-13.

Now using the matrix notation described above, the vector of the values for the nodes in level 1

is a column vector of size n and is given by
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and the value of the lowest nodes, A and B, can be computed as
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Figure 2-13:  Goal Latt ice for Sensitivity Example
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n

p

m

 is the number of nodes at the middle level

 is the number of nodes from the middle level which contribute to each 

   of the bottom nodes

 is the number of nodes at the middle level shared by each of the bottom

    nodes

Expanding into separate equations for A and B yields
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Taking the partial of A - B with respect to δ yields
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Taking the partial with respect to n yields
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( )

=
−
δ

n 1
2

The sensitivity of the value of the bottom nodes to changes or “perturbations” of the values at

the top of the lattice can be described by noticing that as δ → 0, A - B = 0 and as n → ∞ , A - B =

δ.  This simply shows that the smaller the “perturbation” the smaller the effect on the bottom goals.

Also the more nodes at the middle level, the smaller the effect of the “perturbation”.

2.5.5.1.2 Structural Sensitivity

This process can be repeated for an asymmetric goal lattice in order to examine the sensitivity

of the values of the bottom nodes to changes in the structural asymmetry of the goal lattice.  The

same goal lattice in Figure 2-13 can be used except there is no perturbation and p arcs contribute

to bottom node A and q arcs contribute to bottom node B with p ≠ q and m arcs in common.  The

value of A and B can be computed as
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Expanding separately for A and B yields
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Then solving for A - B is

( ) ( )

( )

A - B = − − −

= −

p m
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p q
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05
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. .
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Taking the partial with respect to p - q yields

( )
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∂
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−
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p q n
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Taking the partial with respect to n yields

( )∂
∂

( )A B− = − −
n

p q
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1
2

( 2-18 )

The sensitivity of the value of the bottom nodes to the amount of asymmetry, as measured by p

- q, can be described as (p - q) → 0, A - B = 0 and as n → ∞ , A - B = 0.  This shows that the

more symmetric the lattice, as measured by p - q, the smaller the effect on the bottom goals.  Also

the more nodes at the middle level, the smaller the effect of the asymmetry.

While specific examples were used here to examine goal lattice sensitivity, this can be

expanded to more general cases.  That is, in general, one can measure sensitivity by examining the

Jacobian of the transformation matrix.
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Chapter 3

3 Information Theory  .

3.1 Background

The concept of entropy was first introduced by R. Clausius in 1865 when he was studying heat

cycles in phenomenological thermodynamics.  Since then the term “entropy” has been appropriated

by many fields including statistical mechanics (L. Boltzmann in 1872) communications theory (C.

L. Shannon in 1948), probabili ty theory, logic linguistics, abstract analysis and number theory

[82].  It is Shannon’s measure of information that is of practical interest to sensor management and

sensor scheduling.  As Skagerstam [82] states, Shannon introduced the concept of information

theoretic entropy and information based on the concept of a discrete information source as a

discrete random process.  Shannon [38] defined the entropy information measure as

H K p pi i
i

n
≡ − ∑

=
log

1

( 3-1 )

where K is any positive constant and pi as the probabili ty of the i th outcome of the random event.  It

is the quantities of the form in ( 3-1 ) that Shannon states “…play a central role in information

theory as measures of information, choice, and uncertainty.  The form of H will be recognized as

that of entropy as defined in certain formulations of statistical mechanics… .”
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Then using the information entropy defined in ( 3-1 ), Shannon defined the information, I, as the

difference of the entropy for two given probabili ty distributions for the random event.

In a C3I context, the use of sensors is to decrease our uncertainty about the states of the

multiplicity of targets which populate our world.  Stated another way, sensors are used to reduce

the uncertainty about targets -- such as the location, identification, or intent of all targets in a given

area of responsibili ty, essentially our “world.”  However, the process of sensing the environment is

constrained in that sensors cannot observe all parts of the operating environment simultaneously

and still have suff icient gain and selectivity to measure individual targets effectively.  A trade-off

must be made in searching one area at the expense of others.  Sensors have a limited field of view,

and by the time a sensor revisits a previously observed area a new target may have appeared or a

previously detected target may have maneuvered into a different location.  The latter will require

the sensor to expend limited resources in order to search a larger area in an attempt to reacquire the

target.  This is all at the expense of increasing the uncertainty of other search areas, possibly losing

track of previously detected targets, or identifying previously detected targets.  This spatial-

temporal mutual exclusivity of sensors can be considered as a constrained communications channel

[61].

A basic assumption is that without sensing the world, its entropy or uncertainty about the

world is continually increasing.  If allowed to continue without sensing, the world becomes a

uniformly distributed space of targets.  Because different targets have different dynamics and noise

driven processes, there is a differential uncertainty increase among them.  It is the purpose of the
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sensor management system to discover that differential uncertainty and exploit it to minimize our

global uncertainty about the world.

From an information-theoretic viewpoint, the purpose of a sensor is to interact with the

operating environment in order to reduce the uncertainty about it.  By detecting, localizing, and

identifying a target or determining that a target is not present results in an information gain (as

measured by a reduction in uncertainty).  Information is also gained when a sensor is used to

increase the accuracy of the kinematic state of a target that is already being tracked.  These

information gains or reduction in uncertainty can be broken into 3 components.  They are [61]:

− uncertainty of the location of undetected targets, ( )p x yU ,

− uncertainty with the estimate of a target’s kinematic state vector, |xk

− uncertainty about target identity (from identifying a target as friend or foe to determining

target classification to identify a specific target tail or hull number), |xk
F

Despite the apparent applicabili ty of this information theoretic approach, very few references

pertaining to the use of Information Theory for the managing and scheduling of sensors can be

found in the li terature.  They can be categorized into the following areas:

− Kalman fil tering

− Target detection / recognition

− Data fusion

− Sensor management
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3.2 Information Theory Applied to Kalman Fil tering

Several papers apply Information-Theoretic (IT) concepts to general estimation problems.  In

their paper, Kalata and Priemer [83] derive a minimal-error entropy estimator for linear systems.

They base their derivations on mutual information between a random process x resolved by the

observations z.  The authors show that minimizing the error entropy is equivalent to minimizing the

mutual information between the prediction error and the observation.  By using the entropy error,

the authors derive the optimal discrete linear predictor, fil ter, and smoother involving additive

Gaussian noise disturbances.  The result is that the optimal entropy error fil tering solution is

identical to the optimal means square error (discrete Kalman fil ter) fil tering solution shown in Gelb

[84].  Additionally, they show that for non-Gaussian cases, the Kalman fil ter is a minimax entropy

error linear fil ter.

Tomita, et al. [85], apply information theory to only fil tering problems.  Both discrete time and

continuous time fil ters are presented unlike the previous paper that only looked at discrete time

Kalman fil ters.  Specifically, the authors state that “… the necessary and suff icient condition for

maximizing the mutual information between a state and the estimate is to minimize the entropy of

the estimation error.”  The authors then proceed to construct the discrete and continuous time

Kalman fil ters using the relationship between maximum mutual information and minimum entropy

error.  Tomita, et al. [86], then extend their information theory approach to derive  the optimal

fil ter for a continuous time nonlinear system.  The conclusion the authors make is that “… mutual

information plays the central role for the estimation problems as well as the coding problems

discussed by Shannon [6].”
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3.3 Information Theory Applied to Target Detection / Recognition

Hoballah and Varshney [87] look at the detection problem using an entropy based cost

function in determining the optimum detection.  They show that statistical detection can be viewed

as maximizing the amount of information transferred through a channel.  The authors also show

the relationship of mutual information and receiver operating characteristics (PD and PFA).  They

also extend the derivation of the optimum threshold and fusion rules based on mutual information

for distributed detection situations.

Clark, et al. [88], [89], [90], develop and apply an information theoretic measure to evaluate

the performance of forward-looking infrared (FLIR) sensors used for target detection in automatic

target recognition (ATR) systems.  The FLIR systems under investigation by the authors are used

to detect and recognize mili tary vehicles against a low clutter background.  With a FLIR, one

generally receives a signal return that is expressed in terms of the pixel intensities.  The pixel

intensities are then used to determine the probabili ty density functions (pdf) of the pixels within a

target region and in a background region.  The authors use these pdfs in developing their

“ Information Theory Image Measures” (IT IM) based on the relative entropy of the two

distributions (see Soofi [91] for a discussion of relative entropy).  In contrast to this approach, the

current evaluation process is based on human perception.  The IT IM was compared to other

measure such as target to background contrast and target versus background entropy based on gray

levels of pixel images.  The authors conclude that the “… Information Theoretic image measure

was found more powerful than Contrast and Entropy for separabili ty of different image regions,

resulting in much lower false alarm probabili ty.”
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Hintz [39] also applies an information measure to automatic target recognition (ATR) -

specifically when the ATR is used to aid a trained observer to perform target recognition.  The type

of system being considered is called a cuer -- measurements of one sensor are used to refine and

aim another sensor.  The approach used by the author is to measure information in terms of

subimages that have meaning to the observer and not the entire scene as was used by Clark, et al.

Hintz interprets entropy as a measure of uncertainty and thus measures information as the change

in entropy with the sign determining if information was gained or lost.  The form he uses is:

I H H= −before observation after observation ( 3-2 )

where he defines H as entropy (-p ln p).  The author goes on to define several different types of

cuer information and presents several numerical examples to demonstrate the quantities of

information available for each type.

A final paper by Turner and Bridgewater [92] discusses the use of an information theoretic

approach to surveill ance of large areas and the detection of targets.  There goal is to maximize the

amount of information from each interrogation of the search space by a space-based electronically

agile radar.  By using information theory, they modify the classical binomial sequential detection.

Their process is used to adapt the detection threshold in order to extract the maximum amount of

information at each step in the detection process.  By dividing the search area into cells and

establishing a criteria of maximizing the information gain or uncertainty reduction with each dwell

of the radar, they determine which cell to visit next.
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3.4 Information Theory Applied to Data Fusion

Either a Bayesian or Dempster-Shafer probabili stic models can be used to address data fusion

and data management.  Using a Bayesian approach, Manyika and Durrant-Whyte [68] compute the

expected utili ty of taking an action.  They demonstrate the use of Fisher information and entropy as

a measure of information and use this information metric as the expected utili ty of data fusion.

Greenway, et al. [93] investigate communications management within a decentralized

multisensor system where a number of distributed nodes each make local decisions on whether to

track or identify a target or to communicate target information to other nodes.  The authors

compare two communications management algorithms constrained by a maximum transmission

bandwidth and available bandwidth.  The two algorithms are a round robin approach and an

information theoretic approach based on entropy considerations.

Oxenham, et al. [94], address measures of information for multi-level data fusion.  The

authors state that the purpose of data fusion is to increase the information content by fusing

multiple sources of uncertain information and that a reduction in uncertainty equates to information

measured by Hartley information and Shannon entropy.  They use a fuzzy set or fuzzy theory

approach to categorize uncertainty into ambiguity and vagueness and then further refine and define

several types of uncertainty.  They then diverge and discuss a measure of information with respect

to Dempster-Shafer theory of evidential reasoning and to fuzzy reasoning.  While they define

several types of uncertainty and provide examples of how to measure them, it is not clear how it is

applied to data fusion.
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3.5 Information Theory Applied to Sensor M anagement and Scheduling

Barker [95] investigated the application of information to search theory.  He presents and

proves a theorem that states that “…subject to a constraint on total search effort, the allocation of

search effort that the maximizes the probabili ty of detection also maximizes the entropy of the

posterior search distribution.”

Hintz and McVey [37] provide the first article on applying a measure of information to sensor

management.  Their assumption is that a communication channel is running at its capacity and is

unable to handle all of the information that is available -- it is running at its Shannon limit.

Extending this concept further, they describe a measurement constrained channel -- that is, several

targets are being tracked with the use of a separate Kalman fil ter for each target.  Insuff icient

sensor resources are available and the available sensors must be scheduled to maintain a specified

level of track accuracy.  Based on this description , they develop a measure of information using

the change of entropy in order to determine how to schedule sensors and process the data.  Entropy

at a given time is defined as the square root of the norm of the conformal error covariance matrix

maintained by the Kalman fil ter.  By computing the change in entropy at each measurement

opportunity, they develop a method to sequence measurement through a “constrained” channel.  By

using entropy as a measure of information, they are able to use this method to maximize the

amount of information flow at each available sample interval.

Based on the previous work of Hintz and McVey, Schmaedeke [42] uses information gain as

the cost function of a Linear Program to optimize the allocation of multiple sensor to track

multiple targets at the next time step.  As with Hintz and McVey’s approach, Schmaedeke uses
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the expected information gain based on extrapolating the Kalman fil ter error covariance and then

calculating the updated covariance matrix after a update.

Kastella [46],[47] proposes another information theoretic measure which he terms as

“discrimination gain” which is also know as Kullback-Leibler information.  He uses the expected

discrimination gain to determine the optimal order for searching a set of discrete detection cells in

order to detect and track multiple targets.

3.6 Proposed Information Measures

As stated earlier in this chapter, every opportunity a sensor has to observe the environment

equates to a certain amount of information which can be obtained about the state of the

environment.  A fundamental question is how to use this potential information to manage a suite of

sensors while maximizing ones net knowledge about the state of the environment.  The

search/track/identify decision problem is whether to continue to track or identify a previously

detected target and with which sensor to use or whether to search for an, as yet, undetected target.

The approach used in this research to computing the amount of information gained is based

on entropy considerations.  Using Shannon’s entropy, ( 3-1 ), as a measure of uncertainty, the

change in entropy over time measures the decrease in uncertainty or, synonymously, information

gained.  In the search versus track versus identify trade-off issue, the amount of information

gained from a sensor measurement of the environment versus updating either the kinematic or

nonkinematic state estimate for a target can be computed and used to determine which option
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provides more information - search, track, or identify.  The rationale behind using entropy as an

amount of information is that it yields a commensurate measure that affords this comparison.

The approach to computing the information gain is based on mutual information - the change

in entropy of the pdf  before a measurement is taken and after it is taken as in ( 3-2 ) where

entropy, H, is computed based on Shannon’s entropy formula.  Specifically, entropy is defined as

( ) ( )
( ) ( )

H p x p x

p x p x

x i i
i

= −∑

= −∫

log

log

for the discrete case

for the continuous case

( 3-3 )

where p(xi) is the probabili ty density (mass) function for the continuous (discrete) distribution.

The following sections describe how information gain is computed for target detection (search),

tracking, and identification.

3.6.1 Target Search Information

Target locations are maintained probabili stically – that is by maintaining a probabili ty

density functions (pdf).  The first pdf is used to represent the probable location of an undetected

target and is used to determine where to search next.  The assumption is that since the number of

undetected targets is unknown, once a target has been detected, there is always another target to

be detected.  Upon detecting a target, its location is maintained separately by the kinematic state

estimation process and not as part of the undetected pdf.

Typically, sensor performance characteristics are specified by a particular signal to noise

ratio (S/N).  The approach used here is to model the sensors in terms of their probabili ty of

detection (PD), probabili ty of false alarm (PFA), and beamwidth.  The assumption is that a
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particular PD or PFA can be translated into an equivalent S/N for each sensor and then the S/N

can be translated to a particular sensor design.  By using this paradigm, it allows any type of

sensor to be modeled thus providing the abili ty to study the effects of different sensors and

sensor scheduling schemes.

Given this representation of sensors, the assumptions of the undetected pdf include:

− The search area is represented in Cartesian space (x, y) quantized into m by n cells for a total

of m∗n cells.

− The initial density function is a function of a priori information.  In the case of the “ in

harm’s way” situation with no a priori information, the initial density function is assumed to

be uniform as shown in Figure 3-1.  For the uniform case, the location of the undetected

Y X
}

n cells m cells

Figure 3-1:  Uniform Distr ibutionof Probable Undetected Target Location
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target(s) is unknown so the probabili ty of target being in a cell i s ( )p xy m ntgt in cell = ∗1/

with the distribution function f x y mni j( , ) = 1 .

− f x y( , )  is a pdf and therefore f x yi j
j

n

i

m
( , )

==
∑∑ =

11
1.

− When a sensor performs a measurement, its spatial detection distribution (under the beam)

based on beamwidth, PD, and PFA is converted to an appropriate pdf in Cartesian space and

use to update the undetected target pdf.

Using the above representation, two random variables are hypothesized, A and B.  B maps

the location of targets in the search area to the integer cells before a measurement is taken.  A

maps these same locations after a measurement is taken.  The amount of mutual information

between the two random variables can be calculated by the difference in entropy between the A

and B using the discrete case of ( 3-3 ).

It is assumed that the MM has access to a two dimension probabili ty density function (pdf)

of the operational area which is maintained in real-time by the fusion space.  When

measurements are made by a sensor, whether they detect a target or not, they influence the pdf of

where an undetected target is most likely to be.  A priori order of battle information can be used

to initially skew this pdf to reflect expected target deployment.  A target which is detected

indicates an area which should not be searched again, although it may be observed in order to

convert the target from detection to track and maintain track.  A measurement without a

detection decreases (to 1-PD) the probabili ty of a target being in that area.  After a number of

measurements, the probabili ty surface of possible locations of undetected targets becomes quite
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convoluted yet does indicate by its peaks the areas which have the highest probabili ty of an

undetected target being detected.  There is also an ongoing temporal low-pass fil tering of the pdf

which acts to slowly return the undetected target pdf to a uniform distribution because of the fact

that targets could have moved from one unsearched area into an area which has already been

searched.  Essentially this reflects an increase in world target model entropy as the time since the

last measurement increases.

Since the MM has access to this pdf, it uses the goal-lattice derived values to determine when

to search as opposed to tracking or identifying.  In deciding to request a search, it must pass

additional information to the II in order to enable the II to decide what type of observation function

to perform.  The additional parameters which must be passed include where to search, to what level

of certainty to perform the search as measured by (1 - PD), and a time by which the search must be

completed.  Note that by only specifying the level of certainty rather than the sensor to use, the II

still retains the greatest degree of freedom in determining what type(s) of observation function(s) to

request from the sensor manager.  Type of function here refers to high- or low- resolution bearing,

high- or low- resolution range, Doppler, or some combination thereof.  That is, the II takes the

general requirements as passed to it from the MM and refines them by determining which of the

functions which are available to this sensor suite are capable of supplying the requested

information.  This approach leaves the actual observation-function-to-sensor-task mapping to

OGUPSA.

What can be seen from this first model is a layered approach to optimization in which the

MM has an imperfect, coarse model of the target and sensor world with no regard for the actual
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manner in which its requirements are going to be satisfied.  From this model, search, track, or ID

(with the appropriate accuracy and temporal constraints), the MM makes a request which will

satisfy its optimization goals which are derived from, or at least quantitatively expressed by, the

weighted goal-lattice.  It does not bother itself with the implementation details but assumes that

there is some mechanism which can be used by the sensor scheduler to meet its needs.

There is, of course, the possibili ty that the II may not be able to meet the information needs

of the MM and hence must reject the request.  The MM treats this as another event and, taking

into account the rejection along with a reason for the rejection, may chose to make another

request with a less stringent information requirement or temporal constraints, or decide that some

other information need is more important.  This approach leads to a series of parallel local

optimization routines which are globally more effective, if not as accurate , as a single, sensor

system optimization approach because of the reduced combinatorics of information needs to

sensor availabili ty and capabili ty mappings.  It is also conceptually more convenient to partition

the space of possible alternatives along these lines and possibly apply different optimization

criteria to the different layers.

3.6.2 Target Tracking Information

One can also compute the amount of information gain attributed to updating the kinematic

state estimate of a target in track.  Tracking of a target is probably the simplest and purest

information transferring processes.  As the target moves, this information degrades between

observations and must be updated periodically.  At periodic intervals, measurements of the

target’s position are made and an associated position error covariance is calculated.  Assuming
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that the errors are Normally distributed and that as time passes since the previous state estimate

update, the density flattens (variance increases) but remains Normal.  Accordingly, the variance

of the position probabili ty density is increasing in the absence of measurements.  Said another

way, in the interval between measurements, the target’s motion increases uncertainty (decreases

the amount of information) in its position while the measurement process increases the amount

of information about its position.

Track information can be divided into two similar but distinct functions.  The first is the

transition from detection as a result of a search to tracking a target.  The second is the

maintenance of a target which is already in track.  In the transition-to-track  phase, consideration

must be made as to how long to wait before taking the next measurement.  In the case of a non-

Doppler sensor, enough time must elapse between the initial detection and a second

measurement in order to get a good estimate of velocity while still maintaining a high probabili ty

of detecting the target a second time.  If the original detection measurement contains both

position and velocity information, then the consideration is one of how soon to make a

measurement in order to reduce the error covariance of the state estimate to a level requested by

the MM.

Search information has only one temporal constraint, but track information has implied as well

as specified temporal constraints associated with the willi ngness of the MM to tolerate the

possibili ty of a temporary or permanent loss of track.  That is, the MM must specify not only the

time by which a measurement must be made, but also the maximum error covariance matrix, P,

which it is willi ng to accept.  The II can use these values which are contained in the request and
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combine them with an extrapolation of the error covariance and state obtained from the fusion

space to determine how long it can wait for the sensor scheduler to make its measurements and

still provide the fusion space with measurements which can be converted into a observation of

the accuracy requested by the MM.

Fortunately, the extrapolation of the error covariance can be computed recursively

backwards from the requested error covariance matrix (Preq ) to the P+ of the previous

measurement.  The net result of this computation is the number of time intervals (or the total

elapsed time) between when the previous measurement was made and the time by which the next

measurement must be made in order to keep the error covariance below the requested maximum.

This requested error covariance may be specified in terms of Preq itself, or some norm defined

on the Preq.

What this process requires is an appropriate target model that incorporates the maneuver

characteristics of the target and a tracking fil ter state estimator that provides state estimates as

well as error measures.  One of the most widely used algorithms for such a process is the Kalman

fil ter.  As part of the Kalman fil ter process, and error covariance matrix, P, is maintained and

propagated.  It is this matrix that captures the amount of uncertainty associated with the target’s

state estimate.  With each observation, the error covariance matrix is extrapolated based on the

target’s motion and then updated resulting in a decrease in uncertainty yielding in a gain in

information.  The extrapolated covariance matrix, P -, captures the decrease in information due

to the target’s maneuvers while the updated covariance matrix, P +, captures the increase in
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information due to a sensor’s measurement.  Based on the statistical assumptions of the Kalman

fil ter, P - and P + can be computed before a measurement is actually made.

Since P is a matrix, one must define a norm in order to calculate the entropy such as the

determinant of the matrix.  Using ( 3-3 ) for the n-variate case and assuming a normal

distribution, the entropy of P becomes [96]

H ex
n= +
2

1
2

2log( ) log( )π P ( 3-4 )

where P  denotes the determinate of the covariance matrix.  Defining the information gain

between the a priori and a posteriori entropies as in ( 3-2 ), the information gain for the n-variate

normal distribution results in
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where Pb and Pa are the covariance matrix of the errors before and after a measurement,

respectively.  This results in the amount of information gained due to the change in the

uncertainty about the state of the target.

This measure can be extended to the case of multiple targets and multiple sensors.  Since

there is no measured entropy change for a target which is not observed, the information gained is

due only to the observed target.  Since each target in track has its own error covariance matrix, the

optimal choice of which target to measure is the one that yields the most information.  The

assumption is that the global information gain can be maximized by choosing the greatest

information gain at each opportunity without regard to future measurements.  Each sensor has
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different characteristics that include measurement noise.  This is accounted for in the propagation

of P.

There are at least two ways to determine the maximum time between track updates such that

an information criterion from the MM is met.  The first is to specify a maximum level of

uncertainty or uncertainty threshold (as measured by entropy) which is not to be exceeded.  The

mission manager specifies the uncertainty threshold and the II computes the time when that

entropy threshold will be exceeded based on an approximation to the extrapolation of the current

error covariance matrix P .  Using the error covariance extrapolation equation, an information

rate (or information rate propagation function if extrapolation of Pk
−  is not linear), or an

approximation of this process, can be used to compute the time at which the error covariance

matrix will exceed the desired uncertainty.

Given the threshold specified by the mission manager and the error covariance matrix is

extrapolated using ( 3-7 ), with the entropy computed to determine an information rate using

Info threshold  Info rate*

Info threshold

Info rate

=

=

n

n

( 3-6 )

A second approach is also based on the desired level of uncertainty specified by the mission

manager, but assumes a constant update (measurement) interval and calculates the actual number

of update intervals, n, to skip before taking the next measurement.  The net effect is the same as

the entropy-based approach, however this is an exact approach which may have a closed form

solution, and once again shows that this is an II problem which can be solved in different ways
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and not a mission manager problem.  It is assumed that the MM passes to the II the maximum

error covariance that it is willi ng to accept and which will allow the MM to meet its goals.  What

is desired is the time at which to make an observation of the target in track in order to produce a

Pk
+  which does not exceed this constraint.  The problem is how to compute or approximate n ,

the number of uniform update intervals which are to be skipped while allowing the Pk
−  to

propagate and grow.  The following shows the development of the equation which must be

solved for n.

Given the error covariance extrapolation equation [84]

P P Qk k k k
T

k
−

− −
+

− −= +Φ Φ1 1 1 1
( 3-7 )

and the error covariance update equation

[ ]P I K H Pk k k k
+ −= − ( 3-8 )

where

[ ]K P H H P H Rk k k
T

k k k
T

k= +− − −1 ( 3-9 )

if no observation is made at time k, then the observation matrix Hk = 0.  Substituting into ( 3-9 )

yields

[ ]K P P Rk k k k= +

=

− − −
0 0 0

0

1 ( 3-10 )

Then

[ ]P I P

P

k k

k

+ −

−

= −

=

0 ( 3-11 )

Going back one time step
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P Pk k−
+

−
−=1 1

( 3-12 )

and substituting ( 3-12 ) into ( 3-7 ) yields

P P Qk k k k
T

k
−

− −
−

− −= +Φ Φ1 1 1 1
( 3-13 )

But

P P Qk k k k
T

k−
−

− −
+

− −= +1 2 2 2 2Φ Φ ( 3-14 )

Now substituting ( 3-14 ) into ( 3-13 ) yields the recursive equation

[ ]P P Q Q

P Q Q

k k k k k
T

k k
T

k

k k k k
T

k
T

k k k
T

k

−
−

− − −
+

− − − −

− − −
+

− − − − − −

= + +

= + +

1 1 2 2 2 2 1 1

1 2 2 2 1 1 2 1 1

Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ

( 3-15 )

Continuing backwards to time step k-n produces

P P Q

Q Q

P

Q

k k k n k n k n
T

k
T

k k n k n k n k

k k n k n k n k k n

k j
j

n

k n k n j
T

j

n

k m
m

n j

k

−
− − −

+
− − − − − − − − −

− − − − − − − − −

−
=

−
+

− − +
=

−
=

−

= + +
+ +

= ∏
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−
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∑ +n j k n j m

T

m

n j

j

n

k1 1
11

1

1Φ Q

( 3-16 )

If  it is assumed that the process is stationary and the transition matrix does not change with time,

then Φ Φk k= −1 and Q Qk k= −1 then ( 3-16 ) can be simpli fied to

( ) ( )P P Q Qk
n

k n
T n j T j

j

n−
−

+

=

−
= + 



∑ +Φ Φ Φ Φ

1

1 ( 3-17 )

allowing Pk
−  to be expressed in terms of n, Pk n−

+ , and Q.

Pk
−  can be expressed in terms of P H Rk k k

+ ,  ,  and  [84] where

 P P H R Hk k k k k
+ − − − −= +

1 1 1T ( 3-18 )
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P P H R Hk k k k k
− + − −

−
= −





1 1
1

T

Given that the desired Pk
+  is known, the requisite Pk

−  can be computed from ( 3-18 ).  Using this

maximum allowed Pk
−  and the last updated error covariance matrix, Pk n−

+ , n can be computed

from ( 3-17 ).

3.6.3 Target Identification Information

There are two aspects to identification information, the first being the obvious reduction in

uncertainty about the class of target, the type of target, or the specific (hull -number, side-

number) of the target.  This is a number which is easily computed from the enumeration of the

possible types.  A second aspect of identification information is the interaction between ID and

target state estimator performance.  Most target state estimators are designed based on an

assumed target model, the parameters of which change depending on whether the (e.g., airborne)

target is a transport, attack aircraft, fighter, or missile.  Another confounding aspect of target

tracking is the non-stationary statistical behavior of targets, particularly when they are manned

and maneuvering.  While the model may be the same for these targets with diverse

maneuverabili ties and non-stationary maneuvering, the abili ty of the state estimator to maintain

track of a target is dependent on the proper choice of fil ter parameters.  In some cases, multiple

state estimators with different model parameters are implemented and updated simultaneously

and the innovations process is monitored to determine when a maneuver is initiated, indicating

that a different state estimator than the current one may be computing the minimum error

covariance state estimate.
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From the II point of view, it does not care whether the ID is requested to improve tracking

performance or to resolve ambiguities about the specific type, class, or hull -number (side-

number) of the target.  The MM does need to include in its ID request the track number to ID, the

time after which the ID would no longer be of value to it, as well as the degree of identification

which it needs.

There are a number of goal-oriented reasons for which the MM requests identification

information about a target ranging from targeting (Which is the most important target to shoot

at?) to improved performance of the target state estimator by providing it with the relative

maneuvering class of the target (transport, attack, fighter, missile, etc.) so that the target state

estimators’ assumptions can be improved.  Inferential identification, that made from the target

track data itself, is done in the data fusion space and requests of this type are the result of

specific search or observation requests made by the MM.  Direct identification, in which the

sensors are asked to reduce the uncertainty about a specific, non-kinematic characteristic of a

detection or target in track, do not require the type of calculations previously discussed, but are

processed in the II as being mappings from ID information requests to sensor scheduler requests

where specific, non-kinematic measurements are scheduled.  The II performs a table look-up that

determines which type of observations will yield the desired identification.  For example, if the

MM wants to determine the type of target one could passively use electronic support measures

(ESM) to observe the signals emanating from the platform and by consulting the electronic order of

battle (EOB) in the fusion space, determine what type of aircraft it is.  If a more detailed hull -

to-emitter correlation were desired, then some particular ESM characteristics might be used

which require a longer observation time.  The techniques for identification are numerous and
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need not be discussed here other than to indicate that the identification methods, their applicabili ty,

and operational constraints can be listed in a table, sometimes with a one-to-many mapping, and

these observation options downselected and passed to the sensor scheduler.
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Chapter 4

4 Maneuvering Target Tracking  .

4.1 Background

Tracking a maneuvering target involves fil tering and prediction in order to track the target.

“Filtering refers to estimating the state vector at the current time, based upon all past

measurements.  Prediction refers to estimating the state at a future time; we shall see that

prediction and fil tering are closely related [84].”  One of the most commonly used technique for

target tracking is the discrete Kalman fil ter developed by Rudolf Kalman.  The Kalman fil ter is the

optimal li near, unbiased state estimator given its assumptions and is used to fil ter past

measurements and predict where a target will be in the future.  This target location prediction is

then used to point a sensor in order to track the target.  An error covariance matrix is maintained as

part of the normal computation process of the Kalman fil ter.  This error covariance matrix can be

considered as a measure of uncertainty of the kinematic state (called the state estimate) of the

target.

The tracking of maneuvering targets may be complicated by the fact that acceleration may not

be directly observable or measurable.  Additionally, apparent acceleration can be induced by a

variety of sources including human input, autonomous guidance, or atmospheric disturbances.

Several approaches to tracking maneuvering targets have been proposed in the li terature and can
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be divided into two categories both of which assume that the maneuver input command is

unknown.  One approach is to model the maneuver as a random process.  The other approach

assumes that the maneuver is not random and that it is either detected or estimated in real time.

Both assume a rectili near model of target track.  The random process models generally assume

one of two statistical properties, either white noise or an autocorrelated noise. The multiple-model

approach is generally used with the white noise model while a zero-mean, exponentially correlated

acceleration approach is used with the autocorrelated noise model.  The nonrandom approach uses

maneuver detection to correct the state estimate or a variable dimension fil ter to augment the state

estimate with an extra state component during a detected maneuver [97].

Another issue to be considered when tracking a maneuvering target is whether to perform the

Kalman fil ter in polar or Cartesian (x, y) coordinates.  In general, a sensor’s measurements are

reported in range and bearing (or bearing only in the cases of  passive sensors) to the target.  If

Cartesian coordinate are used, then the range (r) and bearing (θ) measurements must be converted

through the transformation equations:

x r

y r

=
=

cos

sin

θ
θ

( 4-1 )

which results in cross-correlated measurement noise.  The resulting covariance matrix can be

represented as

R xy
x xy

xy y

=












σ σ
σ σ

2 2

2 2

( 4-2 )

by using a first order expansion [98], [99], [100] where
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σ σ θ σ θ

σ σ θ σ θ

σ θ σ σ

σ

σ

θ

θ

θ

θ

x r

y r

xy r

r

r

r

r

2 2 2 2 2 2

2 2 2 2 2 2

2 1
2

2 2 2

2

2

= +

= +

= −

=

=

cos sin

sin cos

sin ( )

range measurement variance

bearing measurement variance

( 4-3 )

In using Cartesian coordinates, the state equation is linear while the corresponding

measurement equation is nonlinear.  Using polar coordinates, the state equation is nonlinear but

the measurement equation is linear [101].  This means that tracking in Cartesian coordinates has

the advantage that it allows the use of linear target dynamic models for extrapolation while polar

coordinates may lead to more complicated extrapolation.  By examining ( 4-1 ) and ( 4-2 ), using

Cartesian coordinates for tracking leads to two major disadvantages.  The first is that the

measured (or estimated) range must be available while the second is that measurement errors are

coupled.

The exponentially correlated acceleration model approach is one of the approaches most

widely used to track maneuvering targets.  This chapter examines and compare several

exponentially correlated acceleration approaches in both polar and Cartesian coordinates for

accuracy and computational complexity.  They include the Singer model in both polar and

Cartesian coordinates, the Sklansky model (not an exponentially correlated acceleration),

Helferty’s third-order rational approximation of the Singer model, and Bar-Shalom and

Fortmann’s model.
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4.2 Singer Model Using Polar Coordinates

Singer [102], [103], [104] developed a model that incorporates the maneuver capabili ty of a

target that is both simple and suitably represents the maneuver characteristics.  The Singer model

for manned maneuvering targets assumes that a target usually moves at constant velocity and

that turns, evasive maneuvers, and accelerations due to atmospheric disturbances can be viewed

as perturbations of the constant velocity trajectory.  These accelerations are termed target

maneuvers and are correlated in time with the previous time or the next time increment.  That is

to say that if a target is maneuvering at time t, it is likely to be maneuvering at time t+τ

assuming that τ is suff iciently small .  Singer [102] states that a lazy turn will give correlated

inputs for up to one minute, evasive maneuvers due to radar detection, terrain features, or

preprogrammed maneuvers will provide correlated inputs  for 10 to 30 seconds, and atmospheric

turbulence for only 1 to 2 seconds.  Due to this time dependence, the maneuvers are neither

additive nor Gaussian.  Singer’s probabili ty density function for a target’s maneuvers are shown

in Figure 4-1.  A target can [102]:

- Accelerate (maneuver) at its maximum rate, + Amax with a probabili ty of Pmax

- No maneuver with a probabili ty of P0, or

PMAXPMAX

P0

o-AMAX AMAX

1-(P0 +  2PMAX)

2AMAX

Figure 4-1:  Target maneuver probabili ty density function [103]
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- Maneuver between - Amax and + Amax according to the uniform distribution shown in

Figure 4-1.

In order to use this model in a optimal fil ter such as a Kalman fil ter, the maneuver noise

needs to be whitened.  Singer [103] uses a procedure analogous to the whitening procedure

developed by Wiener and Kolmogorov.  The whitening processes is done by augmenting the

state vector to include the maneuver variables and expressing them recursively in terms of white

noise.

The target maneuver model is in polar coordinates and given by the state equation

x x Gk k kw+ = +1 Φ ( 4-4 )

where

[ ]
[ ]
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( )σ M

A T

R
P P

2

2
2 2

2 03
1 4= + −max

max

R=  target range

The measurement equation is given by

z H x vk k k= + ( 4-5 )

where

H = 









1 0 0 0 0 0

0 0 0 1 0 0

R k
r k

k

=












σ
σθ

,

,

2

2

0

0

The standard fil ter equations for state estimation extrapolation, error covariance

extrapolation, Kalman gain matrix computation, state estimate update, and error covariance

updates are then applied.  The fil ter is initialized based on the first two observations with the

state estimate given by

( ) ( )[ ]�
( ) ( ) ( ) ( ) ( ) ( )x z z z z z z2 2

1
2 1 2

1
2 11 1 1 0 2 2 2 0= − −

T T

T ( 4-6 )

and the nonzero elements of the updated error covariance matrix, P2
+ , defined as
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 ( 4-7 )

with σ M1
 calculated in ( 4-4 ) and
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σ
σ

M
M

z2

12
2

1
2

1
1

( )
( )

=
( 4-8 )

4.3 Singer Model using Cartesian Coordinates

A version of the Singer model can be developed for Cartesian coordinates using a constant

velocity model with exponentially correlated acceleration.  The state equation and measurement

model is

�
( ) ( ) ( ) ( ) ( )x F x G wt t t t t= + 1

 z H x v( ) ( ) ( ) ( )t t t t= + ( 4-9 )

where

[ ]x( ) ( )
�
( ) ( )

�
( )t x t x t y t y t

T=

F( )t =



















0 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0

G( )t =



















0 0

1 0

0 0

0 1

H( )t =










1 0 0 0

0 0 1 0

where the process noise is exponentially correlated, assumed to be equally distributed in the x

and y directions, and used to model the target acceleration.  The measurement noise is normally

distributed with zero mean and covariance R as in ( 4-2 ).  The process noise can be whitened by

augmenting the state vector by appending the necessary state vector components of a linear

shaping fil ter.  This results in a linear model driven by white noise.  This whitening process is
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described in Grewal and Andrews [105] and repeated below.  Modeling the correlated noise, w1(t),

in ( 4-9 ) with a shaping fil ter yields

�
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x F x G w

w H x
SF SF SF SF

SF SF

t t t t t

t t t

= +
=

2

2

( 4-10 )

where SF denotes the shaping fil ter and w2(t) is a zero mean white Gaussian noise.  Using the

system model given in ( 4-9 ) an augmented state vector is formed and given by

[ ]X x x( ) ( ) ( )t t tSF
T= ( 4-11 )

Combining ( 4-9 ) and ( 4-10 ) yields the following augmented system:
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( 4-12 )

�
( ) ( ) ( ) ( ) ( )X F X G wt t t t tT T= + 2
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x
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H X v

( ) ( )
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( )
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( ) ( ) ( )

t t
t

t
t

t t t
SF

T

=








 +

= +

0

Using Singer’s model, the acceleration is uniformly distributed between -Amax and Amax and the

mean number of acceleration changes, α, in a unit time is distributed according to a Poisson

process.  This results in a first-order Markov process with variance σ2 and time constant 1 α .  The

power spectral density corresponding to this exponential process is

Ψ( )ω σ α
ω α

 =  
2
2

2

2+

( 4-13 )

and the system transfer function for the shaping fil ter is

H s
s

( ) =
+

σ α
α
2

2 2

( 4-14 )

The system model for this shaping fil ter is
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with w2(t) and v(t) ~ N(0,1).

4.4 Sklansky Model

The Sklansky model is a Cartesian coordinate, constant velocity tracking algorithm that does

not model acceleration to generate position and velocity estimates of maneuvering targets [106].

The target motion is described by

  
x x x x

x x x
n n n n

n n n

+

+

= + + +
=

1
1
2

1

T T

+T

� � �

� � � �
� ( 4-17 )

where
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x

x

x

n

n

n

=
=
=
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target position

target velocity

T time interval between observations

target acceleration

�

� �

The state space representation of the Sklansky model is given by

x x G a
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=
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Φ ( 4-18 )
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random acceleration in the x and y coordinate respectively
scalar random measurement noise with 

4.5 Helferty Model

Helferty [107] develops a turn-rate model that extends the work of Singer by using a

maneuvering target model that combines a constant velocity and a probabili ty distribution on the



87

target’s turn-rate.  Helferty assumes that the acceleration is independent in both the x and y

coordinates and a uniform distribution on the target’s turn rate with the acceleration maneuvers

exponentially correlated.  This turn-rate model leads to a linear system that is represented with a

third-order Markov process instead of the first-order  process.

The Helferty model assumes a process noise of constant velocity and the turn-rate uniformly

distributed [-rmax, rmax] with the turn-rate changing α times in a unit interval.  The heading angle of

the target is also uniformly distributed but on the interval [-π, π].  The autocorrelation function of

the target acceleration in the x axis is
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The autocorrelation function for the target acceleration in the y axis is
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and the cross correlation between the x and y axis can be shown to be zero107.
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The power spectral density of the autocorrelation function of ( 4-19 ) and ( 4-20 ) is nonlinear

so Helferty computes and presents a rational approximation for the linear shaping fil ter for the

turn-rate distribution.  It is given as

H s
b s b s b

s a s a s a
( ) =

+ +
+ + +

1
2

2 3
3

1
2

2 3

( 4-21 )

The state equation and measurement model used by Helferty is the same as in ( 4-9 ) with
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Applying the whitening process described in Section 4.3, the model for the third-order linear

shaping fil ter given in ( 4-21 ) for one coordinate is
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( 4-22 )

This results in the augmented state and measurement equation
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( 4-23 )

where

[ ]X( ) ( ) � ( ) ( ) ( ) ( ) ( ) � ( ) ( ) ( ) ( )t x t x t x t x t x t y t y t y t y t y t= 3 4 5 3 4 5

and the process noise is normally distributed with zero mean and unit variance.

4.6 Bar-Shalom and Fortmann Model

Another exponentially correlated acceleration model based on the Singer Model is presented by

Bar-Shalom and Fortmann [97].  They use a linear shaping fil ter to augment the Kalman fil ter.

The continuous-time state equation and measurement model is
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( 4-24 )
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The discrete-time state equation corresponding to ( 4-24 ) with sample interval T is

x F x w( ) ( ) ( )k k k+ = +1 ( 4-25 )

where

F A= =

− +
+

− +
+
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The discrete-time process noise covariance matrix Q is given by

Q =
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20 8 6 0 0 0

8 6 2 0 0 0

6 2 0 0 0

0 0 0 20 8 6

0 0 0 8 6 2

0 0 0 6 2

2

5 4 3

4 3 2

3 2

5 4 3

4 3 2

3 2
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T T T

T T T

T T T

T T T

T T T

T T T

( 4-26 )

4.7 Model Comparisons

The five models described above where tested using Monte-Carlo simulations with 50

replications in order to compare the state estimation performance of each model.  Two different

target paths [107] were used in the simulations.  The first was a target performing an S turn

lasting 40 seconds and the second is also a S turn maneuver but with an straight segment

between turns and lasts for 80 seconds.  The target paths are shown in Figure 4-2 while Table 4-1

provides a summary of the maneuver parameters used in the simulations.  Figure 4-2a is the

simulated target path for the S turn without the straight segment and Figure 4-2b is the simulated

target path for the S turn with the straight segment.  The “x” denotes the starting position.
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Figure 4-2:  Simulated Target Paths

Table 4-1:  Kalman Fil ter Simulation Parameter Summary

Scenario
S turn without straight segment S turn with straight segment

Initial x, y position (1500 m, 0 m) (200 m, 1500 m)
Initial polar position r = 1500 m, = 0ϑ � r = 1513 m, = 82.4ϑ �
Initial heading 90° 0°
Duration 40 sec 80 sec
Turn rate 10 m/s for 20 sec

−10 m/s for 20 sec
10 m/s for 20 sec
0 m/s for 40 sec

−10 m/s for 20 sec
Sample rate T = −05 1.  s T = −05 1.  s
Range measurement
variance

σ r = 10 2 m σ r = 10 2 m

Bearing measurement
variance

σϑ = 00001 2.  rad σϑ = 00001 2.  rad

Maximum acceleration Amax .= 1745 m / s2 Amax .= 1745 m / s2

Forward velocity vt = 10 m / s vt = 10 m / s

Maximum turn rate rmax  rad / s= 01745. rmax  rad / s= 01745.

Mean number of changes α = −005556 1.  s α = −005556 1.  s
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The remaining model specific parameters and initial error covariance matrices needed to

perform the fil ter simulations are as follows:

• Singer (Polar)

• Pmax .= 01

• P0 04= .

• Q as defined in ( 4-4 )

• P initialized according to ( 4-7 )

• Singer (Cartesian)

• Q =










1 0

0 1

• P initialized with [100000 1000 1000 100000 1000 1000] along the main diagonal

• Sklansky

• Q =










1 0

0 1

• P initialized with [100000 1000 100000 1000] along the main diagonal

• Helferty

• a a a b b b1 2 3 1 2 301667 00249 00010 02335 02132 00019= = = = = =. , . , . , . , . , .

according to Helferty’s formulas [107]

• Q =










1 0

0 1

• P initialized with [100000 1000 1000 1000 1000 100000 1000 1000 1000 1000] along

the main diagonal

• Bar-Shalom and Fortmann
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• σm A= max 6

• P initialized with [100000 1000 1000 100000 1000 1000] along the main diagonal

All of the models performed exceedingly well with extremely small average position and

velocity errors and RMS position and velocity errors regardless of target path used.

Figure 4-3 and

Figure 4-4 show the average range and bearing errors, respectively, for both target paths. The

average range errors are less than ±4 meters for either target path while the average bearing error

is between ±0.3°.  The average range and bearing rate errors are show in Figure 4-5 and Figure 4-6

while the RMS range and bearing errors are shown in Figure 4-7 and the RMS range and bearing

rate errors are shown in Figure 4-8.  The average range rate error is between ±5 m/s and the

average bearing rate is between ±0.4 deg/s.  The RMS errors are 2-4 meters for range, 0.3-0.6 m/s

for range rate, 0.5-2° for bearing and 0.05 deg/s for bearing rate.

The four Cartesian models and the Singer Polar model state estimate converted to Cartesian

coordinates are compared next.  Since the S turn path is along the 0° radial, the x position error is

smaller (±5 m) then the y position (±20 m) for all the models.  The opposite is true for the S turn

with the straight segment since it is along the 90° radial.  The x position error is between ±25 m

and the y position error is between ±5 m.  This can be seen in Figure 4-9 and Figure 4-10.  With

few exceptions, the average velocity error, either x or y, are between ±5 m/s.  The Singer Polar

model with the state estimate converted to Cartesian coordinates and the Sklansky model produce

the largest velocity errors but the never exceed ±15 m/s.  The average velocity errors are shown in

Figure 4-11 and Figure 4-12.
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Figure 4-3:  Singer Model (Polar) Average Range Err or
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The RMS errors for both position and velocity are almost indistinguishable.  The RMS

position errors are shown in Figure 4-13 and Figure 4-14, respectively.  The RMS x and y velocity

errors are shown in Figure 4-15 and Figure 4-16.  As expected, the Sklansky model performs the

worst since it is a constant velocity model that does not include acceleration, e.g. acceleration

treated as added noise.
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4.8 Summary

The exponentially correlated acceleration models appear to be valid and accurate models of

target maneuvers as demonstrated above.  All of the model, whether in polar, Cartesian, or polar

converted to Cartesian provide very accurate position estimates.  The only significant difference is

when velocity estimates are considered due to the nonlinear conversion of the Singer Polar

estimates to Cartesian estimates and the constant velocity assumption of the Sklanksy model.

Besides state estimate accuracy, another consideration in choosing a maneuvering target tracking

model is the computational complexity of the model.  One such measure is the number of floating

point operations (flops).

Table 4-2 shows the number of flops for one iteration of state estimate extrapolation, error

covariance extrapolation, Kalman gain matrix computation, state estimate update and error

covariance update for each model.  The conversion of the measurement noise covariance matrix

from polar to Cartesian coordinates only add an additional 32 flops.  As can be seen, the two

Singer models and the Bar-Shalom and Fortmann models, each a six state estimate model,

require approximately the same number of flops.  The Bar-Shalom and Fortmann model requires

more flops due to the size of the Q and G matrices.  The Sklansky model is a four state estimator

and requires about 2/3 of the number of flops of the Singer model while the Helferty model is a  10

Table 4-2:  Maneuvering Target Model Complexity

Model
Singer (Polar) 2270
Singer (Cartesian) 2274
Helferty 8390
Sklansky 896
Bar-Shalom and Fortmann 2946
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state estimate model requiring over three times as man flops as the Singer model.  The flops were

computed for comparable runs of each model averaged over 80 iterations of the update process

using MATLAB.

For the purpose of the simulation performed as part of this research, either the Singer model in

Cartesian coordinates or polar coordinates with position and velocity converted to Cartesian

coordinates will be suff iciently accurate.  If increased accuracy is required, several other options

are available.  The simplest approach is to apply the debiasing methodology by Lerro and Bar-

Shalom [108].  They describe a methodology for computing the measurement error covariance

matrix in ( 4-2 ) differently that they sate insures the true measurement error statistics are used

when performing the Polar to Cartesian conversion. Another possible alternative is to use the

multiple model approach where multiple models are maintained simultaneously and determine

which state estimate to use based upon detecting and estimating the target’s maneuvering.  Since

the performance of the Singer model can degrade during nonmaneuvering portions of a targets

trajectory, one could use two different Singer-based model fil ters with different values of the

maneuver variance, σm
2, and time correlation, α, and use hypothesis testing to determine when to

switch between the two models [109].  When a target is not maneuvering, the Singer model is used

to track the target with α→∞ and σm
2 = 0.  Once a maneuver is detected the a Singer model with a

finite α and σm
2 ≠ 0 is used.  A similar approach is to use fil ters of different dimensions and switch

between them based on maneuver detection.  One such approach is the variable dimension fil ter of

Bar-Shalom and Birmiwal [110] in which they use a four state ( x x y y, � , , � ) constant velocity model

when a target is not maneuvering.  Based on a maneuver detection scheme, new state components
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are added and a constant acceleration model with six states, ( x x x y y y, � , � � , , � , � � ), is used.  One the

maneuver is complete, the four state model is used again.

Two other possible approaches which can be used to increase accuracy are the interacting

multiple model (IMM) algorithm and innovations-based approach.  The IMM approach consists of

a set of several fil ters which interact through state estimate mixing to track a maneuvering target.

Efe and Atherton [111] present on such example of an IMM utili zing adaptive turn rate models

while Blair, et al. [112], use IMM fil tering based on exponentially correlated acceleration models.

Blair, et al., use four models in their IMM fil ter.  They include a constant velocity model, a

constant acceleration model, an exponentially correlated model with increasing accelerations and

an exponentially correlated model with decreasing accelerations.
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Chapter 5

5 Simulation Study  .

5.1 Model Description

In order to demonstrate and evaluate the proposed Information Theoretic sensor manager, a

two-dimensional multiple target, multiple sensor detection, tracking, and identification simulation

model has been developed based on the mathematical model shown in Figure 2-3.  The sensor

manager functions have been partitioned into the Sensor Scheduler and the Information Instantiator

as presented in Figure 2-2.  The model has been designed to support any reasonable number of

targets and sensors.  The position observed by each of the sensors can be controlled independently

of the other sensors or cooperatively to form a pseudo sensor.  Each target is assumed to maneuver

independently with target tracking accomplished by using independent Kalman fil ters based on the

Singer model (in Cartesian coordinates) for manned maneuvering targets described in Chapter 4.

The simulation architecture is shown in Figure 5-1.

The simulation model was developed with the underlying assumption that surveill ance

platforms capable of carrying several different types of sensors (radar, IR, ESM, etc.) are sent

out  to surveil the environment.  Each sensor’s capabili ties and performance are modeled through a

Kalman fil ter observation matrix (one for each sensor) and noise variance of their measurements.

As discussed earlier, the simulation model captures sensor characteristics in
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terms of their PD, PFA, and fundamental parameter measurement accuracies such as beamwidth,

range, range rate, and bearing.

The amount of maneuverabili ty of a target has a direct correlation to the amount of uncertainty

about the target’s future position.  One can either increase the measurement rate of a sensor or

combine independent measurements from multiple sensors in order to decrease information or

conversely, gain information.  In the case of increasing the  measurement rate, the amount of

information gained is limited by the measurement noise (sensor’s accuracy) and the process noise

(rate of increase in uncertainty of the target’s state due to maneuvers).  In the extreme limit, a fixed

target yields no new information with each measurement after the first except that gained by

averaging repeated noisy measurements.  If you are currently tracking a slow maneuvering target

that is acting in a predictable manner, it then becomes possible for the sensor manager in general

and the Information Instantiator in particular to trade off tracking for search or identification.  That

is, reducing the frequency of observations of the target while not losing track would not result in

any significant reduction in the accuracy of the state estimates.

5.2 Search Area

In order to apply information theoretic measures, the search area is represented

probabili stically.  That is, a search area is divided into m∗ n cells with each cell containing a

probabili ty of an undetected target being in that cell .  Collectively, the cells can be considered as

a discrete probabili ty density function (pdf).  When a search is performed, the return signal based

upon a target location results in an measurement vector and then a detection is determined in the

fusion space.  After each sensor observation, the pdf is updated thus the pdf is a global estimate
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of target location uncertainties and can be used to determine the most likely location of an as yet

undetected target and hence where a sensor should search next.

By representing the search area as an undetected target location pdf, the information gained

by observing the environment can be computed based on mutual information - the expected

change in entropy of the pdf before an observation is taken and after it is taken.  This is defined

as

I = H(before) -  H(after) ( 5-1 )

where H is computed by using the discrete Shannon entropy formula

- p x p x )i i∑ ( ) log ( ( 5-2 )

Since the pdf is based on sensor observations, the pdf is only an estimate of where targets are (or

are not) and not their actual location.  Actual locations of detected target are maintained

separately for comparison in order to evaluate the effectiveness of the various sensor scheduling

schemes.

While this method of dividing the search area into grids provides many benefits, it does come

at a significant cost most notably the computational overhead associated with maintaining the

undetected pdf.  After each sensor observation is completed, the new probabili ty in each grid must

be computed and each element of the array representing the undetected target pdf must be updated.

The larger the search area the more pdf computations must be done and the more time it takes to

run the simulation.  For example, if the search area is 100 cells by 100 cells then the number of

computation required after a sensor observation is 104.  A 1000 by 1000 cell pdf would require 106

updates after each sensor observation.
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5.3 Sensors

Several types of sensors at multiple locations and the use of pseudo-sensors are available in the

simulation model.  The types of sensors represented include sensors that provide range and bearing

(with or without Doppler capabili ty), bearings only sensors, electronic support measure (ESM)

sensors, and pseudo-sensors.  As stated earlier, a pseudo-sensor is one in which two or more

sensors work cooperatively to perform a measurement that neither of them is capable of making by

itself.  For example, two non-collocated bearings-only sensors can be used to measure the position

in 2D space even though each can only observe its line-of-bearing.  Thus, pseudo-sensors are used

to model the cooperative use of multiple bearings-only sensors located on different platforms to

provide range and bearing estimates.

One method of simulating the capabili ties of various sensors is to explicitly define such

characteristics as

− bandwidth

− wavelength

− duration of waveform

− signal power per pulse

− receiver noise strength

− diameter of radar aperture

However, for the purpose of this simulation a more convenient and simpler method is employed.

Regardless of the sensor, the sensor’s performance can be captured by its PD, PFA, and

beamwidth.  The S/N is determined by the environment that the sensor is operating in (e.g. level
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of clutter and electronic jamming).  Then using this S/N and setting a desired PD (PFA), the sensor’s

operating characteristics determines the PFA (PD) [113].  Thus, these three sensor parameters fully

specify the sensor’s capabili ties.

5.4 Targets

Any number and type of targets can be represented in the model.  Target movements are

driven by random maneuvers of specified variances based on the Singer target maneuver

probabili ty function.  Different types of targets can be  represented by setting the appropriate

maximum acceleration, maneuver correlation coeff icient, probabili ty of maximum maneuver

(positive and negative acceleration) and probabili ty of no maneuver.  Additionally, each target can

be initialized with any starting range and bearing.  There is no interaction of targets -- that is, each

operates independently of each other.  The actual locations of each target are maintained for

ground truth purposes (e.g. to determine if the target is inside the sensor’s beam and to determine

the probabili ty of detection).

5.5 Target State Estimator

An individual Kalman filter is maintained for each target that is detected.  Based on the

review and testing of maneuvering target models from the previous chapter, a Singer-based

Cartesian coordinate model has been selected for use in the simulation model.  The reason for

this is to keep the target state estimates in the same coordinate system as the undetected target

pdf.  A multiple model approach with a bank of three fil ters using different acceleration and

probabili ty of maneuvers has been implemented in the simulation model.  If the difference

between the  measured versus fil tered position (the innovations process) reaches a specified
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threshold then a different fil ter can be selected.  Identification of a target can also result in selecting

a different fil ter to be used.

As discussed in Chapter 3, the error covariance matrix (P), maintained as part of the Kalman

fil ter computation, captures the amount of uncertainty associated with a target’s state.  This

covariance matrix is updated after each observation resulting in a decrease in uncertainty or gain

in information.  The information gained due to the change in uncertainty about the target’s state

is calculated using the determinant of the error covariance matrix before (Pb) and after (Pa) the

update.  Using the continuous version of Shannon’s entropy formula and assuming a Normal

distribution as discussed in Section 3.6.2, the amount of information gained is based on the

norms of Pb and Pa as given by  ( 3-5 ).

5.6 Sensor Scheduler

An enhanced version of the dynamic sensor scheduling algorithm called the On-line, Greedy,

Urgency-driven Pre-emptive Scheduling Algorithm (OGUPSA) [19], [20] has been incorporated

into the model.  OGUPSA was developed using the three main scheduling policies of Most-

Urgent-First to pick a task,  Earliest-Completed-First to select a sensor, and Least-Versatile-First

to resolve ties.  One of the key components of OGUPSA is the information in the applicable

sensor table.  This table is the mechanism that is used to assign requested tasks to specific

sensors.

Significant improvements and modifications to OGUPSA have been made in order to

implement the algorithm for use in this simulation.  Of particular interest is the expansion and
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development of the OGUPSA applicable sensor table to more realistic tasks than in the original

OGUPSA paper [19].  The original work focused on a unit execution time task scheduling problem

without any task preemption.  Logic has also been added to insure that a task requiring more than a

unit execution time is not interrupted during the performance of a task.  Another improvement

restricts the scheduling and initiation of a task by using a “commence no sooner than” time.  This

can be used to schedule future tracking or identification tasks at specific times.  The final

enhancement involves the use of pseudo-sensors.  Two types of pseudo-sensors have been

incorporated into OGUPSA.  The first is a sensor that operates in several modes.  An example of

this is a Doppler radar operating using either Doppler or not using it.  The other type of pseudo-

sensor is the cooperative use of 2 bearings-only sensors at different locations in order to obtain

range and bearing measurements of a target.  An updated version of the OGUPSA scheduler

architecture is shown in Figure 5-2.

5.7 Information Instantiator

The sensor manager is concerned with searching, tracking, and identifying.  These manager

functions need to be mapped to sensor scheduling tasks.  It is the Information Instantiator that

determines what observation functions are required based on computed expected information for

each request from the mission manager.  As discussed in previous chapters, information requests

which are passed from the MM to the II are of three types, search, track, and identification.

Along with each of these requests is an indicator of the type or amount of information required

by the mission manager as well as temporal constraints before which or after which the fulfilli ng

of the request would be of decreased value to the MM.  An applicable function table maps the

sensor management functions to the tasks used in OGUPSA’s applicable sensor table has been
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developed and implemented.  The applicable function table provides the mechanism for the sensor

manager to request sensor independent tasks to meet specific mission goals and it becomes the

responsibili ty of the sensor scheduler to assign those tasks to specific sensors.  An example of an

applicable function table is shown in Table 5-1.

Figure 5-2:  Enhanced OGUPSA Scheduler Architecture
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5.8 Programming Language

The simulation model was developed on a Sun SPARC workstation and a DEC Alpha

workstation.  However, the model can also be run on IBM compatible personal computers as well

as most computer workstations.  For ease of programming, the model was developed using the

matrix-based MATLAB programming language.  The main drawback of this language is that it is

an interpreter so execution can be slow.  The major advantage of using MATLAB is its build-in

graphics capabili ty and the inherent programming structure that can later be converted to the C-

language or a simulation language for compilation and faster execution as well as its portabili ty.

Table 5-1:  Applicable Function Table Mapping Management Functions to Scheduling Tasks

Functions Sensor Scheduling Tasks
Task 1 2 3 4 5 6 7 8 9 10 11
Accuracy Low

x
High

x
Low

y
High

y
Low
x,y

High
x,y

Low x,y
High �x

High x,y
Low �x

Low x,y
(x detect)

Low x,y
(y detect)

High
feature

Search X X X X

Transition
to Track

X X X X

Track
High
accuracy

X X X X

Low
accuracy

X X X X

Reacquire X X

Identify X
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Chapter 6

6 Simulation Results   .

6.1 Search Area

The search area used in the following example is assumed to be a 10 km2 area.  The pdf for

this search area is divided into 106 cells with each cell representing a 10 m2 area.  The center of the

search area is assumed to be at a significantly large enough range so that the small angle

approximation can be used.  That is

s r d= θ ( 6-1)

where is s is the arc length, r is the range, and dθ is the angle in radians.  Sensors with beamwidths

of 0.006° (100 µrad), 0.1° (1750 µrad), and 1° (17500 µrad) at 100 km would correspond to a

beamwidth of 1, 17 and 175 cells respectively assuming linear beamwidths.

6.2 Sensor Description

Five sensors with different PD, PFA and measurement noise were used to detected, track,

and identify targets.  Four types of sensor were modeled and include Radar (1 with Doppler

capabili ty), forward looking infrared (FLIR), infrared (IR) scanner, and an electronic support

measure (ESM) sensor.  The sensors are located either along the X or Y axis of the search area

so the two locations will be orthogonal to each other.  Regardless of which axis the sensor is

located on, the sensors are assumed to be 100 km from the center of the search area.  The types of
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Figure 6-1:  Sensor Locations and Search Area Diagram

Table 6-1:  Sensor Description

Sensor A Sensor B Sensor C Sensor D Sensor E

Nominal type Doppler Radar Radar FLIR IR scanner ESM

Characteristics Range
90m ± 10%
(0.9 cell )
Bearing
1° = 6σ

(29 cell s)
Range rate

± 10%

Range
30m ± 10%
(0.3 cell )
Bearing

0.1° = 6σ
(2.8 cell s)

Bearings-only
0.1° = 6σ
(2.8 cell s)

Bearings-only
100µrad = 6σ

(1 cell )

Bearings-only
1° = 6σ (29

cells)

Location X axis Y axis X axis Y axis X axis

PD 0.95 0.95 0.99 0.99 0.5

PFA 0.001 0.001 0.001 0.001 0.01
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sensors and their locations relative to the search area are shown in Figure 6-1 while a descriptive

summary of the sensors characteristics is provided in Table 6-1.

6.3 Targets

Three classes of targets classes were modeled and include fighter, bomber, and transport

targets.  A total of five targets -- 3 fighters, 1 bomber, and 1 transport -- were used.  As stated in

the previous chapter, each target operates independently of each other so there are no interactions
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Figure 6-2:  Ground Truth of the Targets
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between targets.  Figure 6-2 shows the paths of each target’s ground truth with the position of the

targets at the beginning of the simulation runs denoted with an “x.”

6.4 Latt ice of Goals for Determining Weights Used by the Mission Manager

Since an “ in harm’s way” scenario assumption is being used, a subset of applicable Air

Force goals from Figure 2-10 were identified and used to produce a lattice of goals.  Seventeen

of the 90 Air Force goals that apply to the “ in harm’s way” assumption were used to produce

lattice that can be described as a simpler, pruned version of the entire Air Force lattice.  The

goals that were used are listed in Table 6-2 with the resulting lattice and associated weights for

each goal shown in Figure 6-3.  The bottom three goals (observation functions) are track,

identify, and search with weights of 0.36, 0.46, and 0.18 respectively.  These weights were then

Table 6-2:  " In Harm's Way" Goals

Goal Number Goal Included Goals
1 to obtain and maintain air superiority 2, 3, 4, 5
2 to minimize losses 6, 7, 8
3 to minimize personnel losses 6, 7, 8
4 to minimize weapons expenditure 6, 8
5 to seize the element of surprise 8
6 to avoid own detection 9, 10
7 to minimize fuel usage 10, 11
8 to minimize the uncertainty about the environment 12, 13
9 to navigate 15, 16

10 to avoid threats 15, 16
11 to route plan 15, 17
12 to maintain currency of the enemy order of battle 14, 16
13 to assess state of the enemy’s readiness 14
14 to collect intelli gence 15, 16, 17
15 to track all detected targets
16 to identify targets
17 to search for enemy targets
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used to establish the priority associated with the observation tasks sent to OGUPSA (the sensor

scheduler).

6.5 Sensor M anagement Comparisons

As discussed in Chapter 2, previous sensor managers have been based on ad hoc

methodologies.  This is the first mathematically rigorous sensor management model and as such,

there are no other sensor management schemes to compare it with.  In an attempt to perform a

comparison, the simulation was run using a purely random sensor management scheme and the

sensor management methodology (including the Mission Manager and Information Instantiator)

presented in this dissertation.  In both cases the OGUPSA sensor scheduling algorithm was used

to schedule tasks to sensors.  In the random case, the weights for the three functions (search,

track, id) were all equal and the search aimpoints were chosen randomly along with the time

between track updates.

For the information theory based sensor manager, the weights from the lattice in Figure 6-3

was used to set the priorities for the three functions.  For search tasks, the pdf cell with the

highest probabili ty of an undetected target was chosen as the aimpoint for the sensor.  In the case

of tracking tasks, an information threshold was defined and the target error covariance matrix was

extrapolated to estimate the information rate in order to determine when to perform a track

update.  Lastly, an identification tasks was requested once a target track had been established.

The simulation was run for 100 time intervals with each time increment equal to 0.1 seconds.

As expected the random case did not perform well .  Without using weights and randomly
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choosing where to search, targets took longer to detect and establish track due to the rejection of

transition to track and track requests by OGUPSA.  This demonstrates the need for a method, such

as the use of POSETs and lattices, to establish weights that can be used to establish priorities

between the search, track, and identify functions.

Generally, the information based sensor manager detected and established track on all 5 targets

sooner that the random approach.  But looking at the change in entropy of the search area as shown

in Figure 6-4, there is no significant difference between the two cases.  The reason for this is that

the number of sensor operations for each sensor in both runs were approximately equal -- the

information theory based simulation was just more eff icient in detecting and establishing tracks of

detected targets than the random simulation.

SearchID

0.180.46

0.250.25 0.250.25

0.540.170.29

0.15

0.41

0.270.270.080.23

0.36

Track

Figure 6-3:  " In Harm's Way" Latt ice
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Once tracks were established for a target, the state estimation process performed equally well

for both management schemes.  As stated previously, the Cartesian coordinate version of the

Singer model was used to provide the kinematic state estimates for the targets.  The updated state

estimate, �xk
+ , for targets 1 (fighter) and 2 (bomber) are presented in Figure 6-5.  As can be seen,

the Singer-based model Kalman fil ter performed extremely well .

As discussed earlier, the update rate of a target in track is dependent on the change in

uncertainty, captured by entropy, reaching a specified threshold.  Once a track has been

established for a target, an initial error covariance matrix, P, is established.  P continues to grow

until an update of the target’s state estimate is made via a sensor observation.  The observation is
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converted to a measurement and the target’s state estimate is updated.  This update process

reduces the error associated with the target’s state estimate -- the P matrix is reduced.  This can

easily be seen in Figure 6-6 where entropy of the P matrix is plotted for targets 1 and 2.  The

peaks are the extrapolated P matrix prior to a sensor measurement, Pk
− , and the point directly

below is the updated P matrix, Pk
+ , after the sensor measurement.  The difference between Pk

−

and Pk
+  is the amount of information gained by the sensor measurement.
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As previously discussed in this section, it is virtually impossible to compare different sensor

management schemes due to their ad hoc nature.  As such, two sensor management schemes -

Goal Lattice (information based sensor management system) and Non-Prioritized (with random

search and random time between track) - were run in order to demonstrate the use of goal

lattices.  A summary highlighting the differences between the proposed information based sensor

management and the non-prioritized, random sensor manager is shown in Table 6-3, Table 6-4,

Table 6-5, and Table 6-6.  Regardless of the measure of effectiveness, the new Goal Lattice

system performed superior to the non-prioritized one.  The Goal Lattice system initialized track

on average half as fast as the non-prioritized system and transitioned detection of targets to track

nearly an order of magnitude sooner (Table 6-3).  While the non-prioritized system always had

failures of when transitioning a detection to track (Table 6-4) and occasionally had reacquiring

track failures after a track update was missed (Table 6-5), the goal lattice system never did.

Additionally, as shown in Table 6-6, the goal lattice system always had all of the targets in track

at the end of the simulation.

6.6 Summary

The simulation model has demonstrated the use a new sensor management methodology that

utili zes POSETs to weight mission goals used by the mission manager to prioritize sensor

tasking coupled with an information theoretic based sensor manager.  POSETs provide a

mathematically traceable methodology to establishing priorities that can be used by the sensor

scheduler (OGUPSA) to schedule a suite of sensors to meet the goals of a mission.  Additionally,

the use of Information Theory provides a mathematical foundation used by the Information
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Table 6-3:  Summary of the Track initialization Results of Non Pr ior itized and Goal
Latt ice Sensor M anagement

Average Track Initialization
Average Interval Between Detection

and Track Initialization

Target Non Prioritized Goal Lattice Non Prioritized Goal Lattice

1 28.0 6.8 13.6  2.0

2 23.9 18.1 17.1  2.7

3 32.9 32.5 17.5  4.3

4 46.8 18.4 32.9  2.7

5 25.3 11.9 19.1  4.0

Average 31.4 17.5 20.3 3.1

Table 6-4:  Transition to Track Failure Results of Non Pr ior itized and Goal Latt ice
Sensor M anagement

Transition to Track Failures Non Prioritized Goal Lattice

Minimum 2 0

Maximum 19 0

Average 8.2 0

Table 6-5:  Reacquire Track Failure Results of Non Pr ior itized and Goal Latt ice
Sensor M anagement

Reacquire Track Failures Non Prioritized Goal Lattice

Minimum 0 0

Maximum 2 0

Average 0.6 0

Table 6-6:  Targets in Track at End of Simulation Result of Non Pr ior itized and Goal
Latt ice Sensor M anagement

Targets in Track at End of Simulation Non Prioritized Goal Lattice

Minimum 2 5

Maximum 5 5

Average 4.3 5.0
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Instantiator to determine when to request an update to a target’s state estimate.  Diff iculty in

completely evaluating this new approach arises from sensor management approaches that are not

well defined.  The lack of mathematically based sensor management architectures prevent

comparisons and evaluation of the performance of the methodology described in this dissertation.

However, a framework now exists for evaluating alternative methods for sensor scheduling,

information instantiation, mission management, and sensor fusion.
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Chapter 7

7 Summary and Conclusions  .

While several sensor management approaches have been proposed in the li terature, all

appear to suffer from the mixing of sensor physical requirements with information needs.  What

has resulted is a comingling of not only noncommensurate but inappropriate measures leading to

ad hoc methods of sensor management.  The dissertation presents a new, original hierarchical

sensor management model predicated on information theoretic measures and partially ordered

sets (POSET).  Using the expected change in entropy, expected information gain has been shown

to be a valid approach to sensor management in order to trade-off such functions as search, track,

and identify.

While using information gain is a necessary condition, it is not a suff icient condition for

complete sensor management.  Information gain can be used to perform sensor management

trade-offs but it does not take into account the multiplicity of competing mission goals.  The

approach developed here and demonstrated through a simulation model which overcomes this

limitation, is based on the use of inclusion relationships among the goals and partially ordered sets

of these goals.  This facili tated the construction of a hierarchy of goals using a mathematical means

to weight the multiple, competing goals thus establishing a means to prioritize the sensor

management functions and sensor actions.  This methodology can be applied to both mili tary and
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civili an situations resulting in a new, quantitative, and traceable measure of importance that a

sensor manager can use to perform and optimize trade-off among the sensor management

functions.

Chapter 1 described the motivation for this research along with the problem definition.  Also,

applications of sensor management were described including the “ in harm’s way” scenario, the

search and rescue endeavor of NASA, the management of several low earth orbit satelli tes to

maintain space object ephemeris, and data mining of large databases.

In order to better understand and define the role of sensor management, a comprehensive

review of current li terature was presented in Chapter 2.  Basically, sensor management is a process

that performed properly can improve the data fusion process and ultimately our perceptions

through the management and coordination of sensor resources.  As a result of this li terature review,

a new comprehensive, mathematically rigorous sensor system model was developed to capture the

sensor management process.

Based on this model, an original sensor management system was developed where a Mission

Manager (MM) and a Sensor Manager interact within the Information Space.  The MM relies on

the weights developed from the lattice of mission goals and inputs from human operators to

compute information requests and passes them to the Sensor Manager.  The Sensor Manager

maps the information requests to observation requests and then ultimately schedules tasks to

specific sensors.  The Sensor Manager subsumes two separate, distinct, and essentially

orthogonal tasks allowing the sensor manager to be partitioned into the Information Instantiator
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(II) and the Sensor Scheduler.  The II converts the information requests from the mission manager

into observation requests and passes the observation requests to the Sensor Scheduler where sensor

measurements are optimally scheduled.

In developing and simulating the sensor management model, techniques from several

disciplines where used.  An extension of POSETs and lattices from abstract algebra, called goal-

lattices, provides the methodology to order and weight the mission goals and were described in

Chapter 2.  Chapter 3 provided a background on the uses of information theory as applied to

Kalman fil tering, data fusion, and sensor management and scheduling.  At the conclusion of the

chapter the proposed information measures were developed.  The use of  Kalman fil tering and

the comparison of several exponentially correlated acceleration models were presented in

Chapter 4.

Finally, a simulation model was developed to demonstrate this new sensor management model

and described in detail i n Chapter 5.  The results of the simulation model were then presented in

Chapter 6.

7.1 Contr ibutions

Previous approaches to sensor management have treated the problem as a single optimization

task with a performance measure as a weighted sum of diverse, noncommensurate measures.

The approach developed in this dissertation uses POSETs with superimposed value

apportionment in order to provide a quantitative and traceable measure of importance (weights)

that a sensor manager can use to perform and optimize trade-off among competing management
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functions -- e.g. search, track, and identify.  Another advantage is that these weights can vary as a

function of time or phase of a mission.  Different goals are preferred over others and these

change during different phases of a mission in response to changes in the environment.  A linear

transformation approach was used to map the m-dimensional vector of top level goals to a n-

dimensional vector of goal values for the competing management functions.  Properties of the

goal lattice were also presented including value and structural sensitivity.  This new sensor

management system provides a mathematically based methodology to change the preferences in

real-time during a mission based on changes in information produced by data fusion, a human

operator, or both.

Past sensor management approaches have been ad hoc which makes it diff icult to compare

different sensor management schemes.  This dissertations has developed a hierarchical,

mathematical sensor manager and demonstrated its use in a simulation.  The results from the

simulation suggest that this new model is valid but it was only tested against a random sensor

management scheme.  However, it did successfully demonstrate the hierarchical approach to

sensor management using a mission manager based on weighting of goals coupled with

partitioning the sensor management problem into orthogonal tasks (the information instantiator

and the sensor scheduler).  The simulation based on this new model also highlights the interaction

between the sensors, data fusion, mission management, and sensor management.  This new sensor

management model along with the simulation model provides a basis to compare future

management approaches.
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7.2 Future Research

There are several interesting directions one might pursue in extending both the sensor

management model and the simulation model itself.  The first is the way that the maximum time

between track updates is computed.  The maximum level of uncertainty (a threshold) which is not

to be exceed was used in the simulation.  While this provides an estimate of the interval between

track updates, the closed form method described in Chapter 3 should be investigated.  Another

follow-on to this research would be the development of a closed loop transfer function of the sensor

management system that would allow one to investigate global stabili ty.  Further investigation of

the goal lattice sensitivity needs to be done.  One possibili ty is to develop a method to identify

classes of goal lattices by converting them to a “behaviorally equivalent” lattice using techniques

from Sequential Machine Theory.

Additional work needs to be done on the simulation model also.  Different data fusion

methodologies from the li terature need to be reviewed for possible inclusion in the model.  This

would allow different data fusion approaches (e.g. Bayesian versus Dempster-Shafer or

centralized versus decentralized) to be studied in concert with different sensor management

models.

Another model improvement would remove the limitation on sensor locations.  The model

could be enhanced to handle sensors at any location and not limit them to being located on

orthogonal axes.  Lastly, a better method of representing the undetected target pdf would

significantly improve the simulation run time.  Continually updating 106 is computationally

expensive.  An analog representation, e.g. a phosphor screen, of the search area (undetected
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target pdf) could be used in a real-time system.  As a sensor observes a portion of the search area,

the intensity of the corresponding location on the screen increases while areas not searched would

decrease in intensity.  This screen intensity  could then be processed to determine future search

locations and entropy calculations to measure the increase of information due to sensor

observations.
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Appendix 1

Below are a list of goals used in developing the NASA POSET and lattice.  The goals are

based on a combination of NASA goals documented in their strategic plan and goals added by the

author.  The first column is the node number assigned to the goal (numbered left to right and top to

bottom) stated in column 2.  The third column is a list of goals included in the goal.

Goal Number Goal Included Goals
1 to explore, use, and enable the development of space for human

enterprise
4, 5

2 to use the environment of space for research 6, 7, 8, 9
3 to enable technology development and transfer 10, 11
4 to conduct human and robotic missions to planets and other

bodies in our solar system to enable human expansion
12, 13

5 to provide safe and affordable human access to space 14, 15 ,16
6 to share knowledge of the Earth system and mysteries of the

universe
17, 18

7 to create an international capabili ty to forecast and assess the
health of the Earth system

19

8 to create a virtual presence throughout our solar system 20
9 to support research endeavors in space and on Earth 20, 21
10 To develop cutting-edge aeronautics and space systems

technologies
22, 23

11 To support the maturation of aerospace industries 24, 25, 26
12 to conduct human missions of exploration of other bodies in the

solar system
43

13 to enable future exploration beyond Earth’s orbit 43
14 to enable the full commercial potential of space 27
15 to establish a human presence in space 43
16 to share the human experience of being in space
17 to aid in achieving the science, math and technology goals of the

U.S.
43

18 to disseminate information about the Earth system
19 to advance the scientific knowledge and understanding of the

Earth, solar system, and the universe
28
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Goal Number Goal Included Goals
20 to use the environment of space to expand scientific knowledge 29, 30, 31, 32
21 to expand science knowledge through the use of human

capabili ties in the space environment
29, 30, 31, 32

22 to enable U.S. leadership in global civil aviation through safer,
cleaner, quieter, and more affordable air travel

33

23 to revolutionize air travel and the way in which aircraft are
designed, buil t and operated

34, 35, 36

24 to enable or provide aerospace R&D services, facili ties and
expertise

37

25 to promote the commercial development of space
26 to enable the productive use of science and technology in the

public and private sectors
27 to reduce the cost of access to space 43
28 to preserve the environment by studying the Earth as a planet and

as a system
38, 39

29 to search for li fe beyond Earth 43
30 to explore the universe to enrich human li fe 43
31 to discover planets around other stars
32 to solve mysteries of the universe 40
33 to preserve our freedoms for future generations
34 to share knowledge and technologies to enhance the quali ty of li fe

on Earth
41

35 to conduct aeronautic and space research
36 to apply new aeronautic and space system technologies 42
37 to enable the expansion of space research and explorations
38 to increase our understanding of the effect of natural and human-

induced activities on Earth
39 to develop predictive environmental, climate, and natural disaster

models
40 to chart the evolution of the universe and understand its galaxies,

stars, planets and li fe
43

41 to transfer innovative space technologies 43
42 to test space technology 43
43 to increase knowledge of Mars 44, 45
44 to determine if humans can live on Mars 46
45 to determine if li fe on Mars exists 47, 48
46 to find suitable site for settlement 47
47 to explore Mars 49, 50
48 to analyze samples of mars 50
49 to measure as much of surface as possible 51, 52
50 to navigate 53, 54
51 to maximize duration of mission 55
52 to assess mineral content 56
53 to plan path 57
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Goal Number Goal Included Goals
54 to avoid obstacles 57, 58
55 to conserve on-board resources 59, 60, 61, 62
56  to verify data taken by other means 59, 60, 61
57 to avoid stationary obstacles 61, 62
58 to avoid moving obstacles 62
59 to analyze the atmosphere of Mars
60 to analyze sample
61 to search for objects
62 to track objects
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Appendix 2

Below are a list of goals used in developing the USAF POSET and lattice.  The goals are

based on several USAF and Joint Chief of Staff doctrine manuals and course material from the

USAF’s Air Command and Staff College material.  The first column is the node number assigned

to the goal (numbered left to right and top to bottom) stated in column 2.  The third column is a list

of goals included in the goal.

Goal Number Goal Included Goals
0 to compel adversary to due our will 1
1 to achieve control of the air 2, 3, 4, 5
2 to deny enemy freedom to carry out offensive operations 6, 7, 8
3 to  obtain and maintain air superiority 9, 10, 11, 12
4 to allow friendly forces to perform their mission 13
5 to control tempo of battle operations 14, 15,16
6 to defend lines of communication 17, 18
7 to protect bases 17, 18
8 to protect forces 17, 18
9 to minimize losses 19, 29, 21
10 to minimize personnel losses 21
11 to minimize weapons expenditure 21
12 to seize the initiative with concentration of forces 22, 23, 24, 25
13 to protect friendly aircraft enroute to their target(s) 39, 40
14 to neutralize units not yet engaged by land forces 26, 27, 28
15 to support surface forces in the surface battle 29
16 to reduce abili ty of enemy to plan & control units & tempo 30, 31, 32, 33
17 to destroy aircraft trying to penetrate airspace 34
18 to destroy enemy a/c  trying to attack friendly forces 34
19 to avoid own detection 35, 36, 37
20 to minimize fuel usage 36, 37
21 to minimize uncertainty about environment 48, 49
22 to destroy the enemy's will to wage an effective air war 50
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Goal Number Goal Included Goals
23 to neutralize enemy's will to wage an effective air war 50
24 to  disrupt enemy's will to wage an effective air war 50
25 to negate surface based enemy air defenses 38, 39
26 to delay units not yet engaged by land forces 57
27 to disrupt units not yet engaged by land forces 57
28 to destroy units not yet engaged by land forces 57
29 to create opportunities for maneuver or advance of friendly

forces
40, 41, 42

30 to divert combat and logistic assets to defend routes 43, 44, 45, 46
31 to delay buildup of combat strength 43, 44, 45, 46
32 to degrade eff iciency with which assets can be used 43, 44, 45, 46
33 to deny enemy mobili ty 43, 44, 45, 46
34 to destroy threatening enemy aircraft 47
35 to navigate 90
36 to avoid threats 84, 85, 88, 90
37 to route plan 48
38 to negate enemy SAM air defense 51, 52, 53
39 to negate enemy AAA air defense 54, 55, 56
40 to protect the flank of friendly forces 57
41 to blunt enemy offensive maneuvers 57
42 to protect the rear of surface forces during retrograde maneuvers 57
43 to destroy enemy potential before it can effectively be used

against friendly forces
58, 59, 60, 61

44 to disrupt enemy potential before it can effectively be used
against friendly forces

62, 63, 64, 65

45 to divert enemy potential before it can effectively be used against
friendly forces

66, 67, 68, 69

46 to delay enemy potential before it can effectively be used against
friendly forces

70, 71, 72, 73

47 to intercept threatening enemy aircraft 75
48 to maintain currency of enemy's order of battle 74
49 to assess state of enemy readiness 74
50 to neutralize/destroy enemy aerospace forces 75
51 to neutralize SAM air defense 76
52 to degrade SAM air defense 76
53 to destroy SAM air defense 76
54 to neutralize AAA air defense 77
55 to degrade AAA air defense 77
56 to destroy AAA air defense 77
57 to target particular enemy equipment 75
58 to destroy enemy surface forces 80
59 to destroy enemy movement networks 80
60 to destroy enemy C3 networks 80
61 to destroy enemy combat supplies 80
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Goal Number Goal Included Goals
62 to disrupt enemy surface forces 81
63 to disrupt enemy movement networks 81
64 to disrupt enemy C3 networks 81
65 to disrupt enemy combat supplies 81
66 to delay enemy surface forces 82
67 to delay enemy movement networks 82
68 to delay enemy C3 networks 82
69 to delay enemy combat supplies 82
70 to divert enemy surface forces 83
71 to divert enemy movement networks 83
72 to divert enemy C3 networks 83
73 to divert enemy combat supplies 83
74 to collect intelli gence 75
75 to engage enemy targets 78, 79, 88
76 to physically attack SAM air defense 79
77 to electronically attack AAA air defense 79
78 to id all detected targets 84, 85, 86
79 to detect threats 90
81 to target a particular enemy surface force 87
81 to target a particular enemy movement network 87
82 to target a particular enemy C3 network 87
83 to target particular enemy combat supplies 87
84 to id enemy targets 89
85 to id neutral targets 89
86 to id friendly targets 89
87 to detect a enemy ground target 90
88 to track all detected targets
89 to id targets
90 to search for enemy targets
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